以尾部广义几何林尼克分布为边际的时间序列模型

Mariamma Antony
{"title":"以尾部广义几何林尼克分布为边际的时间序列模型","authors":"Mariamma Antony","doi":"10.22271/maths.2024.v9.i1b.1623","DOIUrl":null,"url":null,"abstract":"Tailed distributions are found to be useful in the study of life testing experiments and clinical trials. Tailed forms of type I and type II generalized geometric Linnik distribution and their asymmetric forms are studied in [1] . The usual technique of transferring data to use a Gaussian model fails in certain situations. Hence a number of non-Gaussian autoregressive models have been introduced by various researchers. A first order autoregressive model with tailed type I generalized geometric Linnik distribution is introduced in this paper. It is shown that the process is not time reversible. The model is extended to higher order cases.","PeriodicalId":500025,"journal":{"name":"International journal of statistics and applied mathematics","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Time series models with tailed generalized geometric Linnik distribution as Marginals\",\"authors\":\"Mariamma Antony\",\"doi\":\"10.22271/maths.2024.v9.i1b.1623\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tailed distributions are found to be useful in the study of life testing experiments and clinical trials. Tailed forms of type I and type II generalized geometric Linnik distribution and their asymmetric forms are studied in [1] . The usual technique of transferring data to use a Gaussian model fails in certain situations. Hence a number of non-Gaussian autoregressive models have been introduced by various researchers. A first order autoregressive model with tailed type I generalized geometric Linnik distribution is introduced in this paper. It is shown that the process is not time reversible. The model is extended to higher order cases.\",\"PeriodicalId\":500025,\"journal\":{\"name\":\"International journal of statistics and applied mathematics\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of statistics and applied mathematics\",\"FirstCategoryId\":\"0\",\"ListUrlMain\":\"https://doi.org/10.22271/maths.2024.v9.i1b.1623\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of statistics and applied mathematics","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.22271/maths.2024.v9.i1b.1623","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

尾随分布在生命测试实验和临床试验研究中非常有用。文献[1]研究了 I 型和 II 型广义几何林尼克分布的尾随形式及其非对称形式。在某些情况下,使用高斯模型传输数据的常规技术会失效。因此,许多研究人员引入了一些非高斯自回归模型。本文介绍了一种具有尾部 I 型广义几何林尼克分布的一阶自回归模型。结果表明,该过程不具有时间可逆性。该模型被扩展到更高阶的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Time series models with tailed generalized geometric Linnik distribution as Marginals
Tailed distributions are found to be useful in the study of life testing experiments and clinical trials. Tailed forms of type I and type II generalized geometric Linnik distribution and their asymmetric forms are studied in [1] . The usual technique of transferring data to use a Gaussian model fails in certain situations. Hence a number of non-Gaussian autoregressive models have been introduced by various researchers. A first order autoregressive model with tailed type I generalized geometric Linnik distribution is introduced in this paper. It is shown that the process is not time reversible. The model is extended to higher order cases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信