{"title":"关于混合粉末放电加工(PMEDM)技术用于加工难加工材料的系统综述","authors":"J. P. Agrawal, N. Somani, N. Gupta","doi":"10.1142/s2737599424400024","DOIUrl":null,"url":null,"abstract":"The area of metallurgy has witnessed many advancements in the development of novel electrically conductive materials that shows exceptional mechanical as well as thermal properties. Nonetheless, traditional machining techniques encounter difficulties while machining hard materials. In order to address this limitation, electrical discharge machining (EDM) has emerged as a widely utilised method for machining of intricate geometries and the hard materials. EDM is a category of thermo-electric process that employs rapid recurring sparks between the electrode and work material, eroding the material without direct contact. As there is no contact between the electrode and work material, the issues related to machining defects such as mechanical stresses, clattering, and vibration eliminates. However, EDM have some limitations like poor surface finish and low volumetric material removal. To overcome these kind of limitations, the introduction of metallic powder into the dielectric fluid has been explored in powder-mixed electric discharge machining (PMEDM). This introduction of powder during the process leads to enhance the conductive strength of the fluid and increases the spark gap distance between the electrode and counter material. The inclusion of powder has a significant impact on the performance of the EDM process. Hence, this review aims to facilitate researchers in comprehending the concept of PMEDM and to examine the process parameters required to achieve improved levels of quality.","PeriodicalId":29682,"journal":{"name":"Innovation and Emerging Technologies","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A systematic review on powder-mixed electrical discharge machining (PMEDM) technique for machining of difficult-to-machine materials\",\"authors\":\"J. P. Agrawal, N. Somani, N. Gupta\",\"doi\":\"10.1142/s2737599424400024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The area of metallurgy has witnessed many advancements in the development of novel electrically conductive materials that shows exceptional mechanical as well as thermal properties. Nonetheless, traditional machining techniques encounter difficulties while machining hard materials. In order to address this limitation, electrical discharge machining (EDM) has emerged as a widely utilised method for machining of intricate geometries and the hard materials. EDM is a category of thermo-electric process that employs rapid recurring sparks between the electrode and work material, eroding the material without direct contact. As there is no contact between the electrode and work material, the issues related to machining defects such as mechanical stresses, clattering, and vibration eliminates. However, EDM have some limitations like poor surface finish and low volumetric material removal. To overcome these kind of limitations, the introduction of metallic powder into the dielectric fluid has been explored in powder-mixed electric discharge machining (PMEDM). This introduction of powder during the process leads to enhance the conductive strength of the fluid and increases the spark gap distance between the electrode and counter material. The inclusion of powder has a significant impact on the performance of the EDM process. Hence, this review aims to facilitate researchers in comprehending the concept of PMEDM and to examine the process parameters required to achieve improved levels of quality.\",\"PeriodicalId\":29682,\"journal\":{\"name\":\"Innovation and Emerging Technologies\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Innovation and Emerging Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s2737599424400024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Innovation and Emerging Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s2737599424400024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
A systematic review on powder-mixed electrical discharge machining (PMEDM) technique for machining of difficult-to-machine materials
The area of metallurgy has witnessed many advancements in the development of novel electrically conductive materials that shows exceptional mechanical as well as thermal properties. Nonetheless, traditional machining techniques encounter difficulties while machining hard materials. In order to address this limitation, electrical discharge machining (EDM) has emerged as a widely utilised method for machining of intricate geometries and the hard materials. EDM is a category of thermo-electric process that employs rapid recurring sparks between the electrode and work material, eroding the material without direct contact. As there is no contact between the electrode and work material, the issues related to machining defects such as mechanical stresses, clattering, and vibration eliminates. However, EDM have some limitations like poor surface finish and low volumetric material removal. To overcome these kind of limitations, the introduction of metallic powder into the dielectric fluid has been explored in powder-mixed electric discharge machining (PMEDM). This introduction of powder during the process leads to enhance the conductive strength of the fluid and increases the spark gap distance between the electrode and counter material. The inclusion of powder has a significant impact on the performance of the EDM process. Hence, this review aims to facilitate researchers in comprehending the concept of PMEDM and to examine the process parameters required to achieve improved levels of quality.