{"title":"建筑工地使用 EPS 骨料保温材料的案例研究","authors":"G. Bumanis, D. Bajare","doi":"10.2478/rtuect-2024-0003","DOIUrl":null,"url":null,"abstract":"\n Thermal insulation materials used in civil engineering have been developing throughout time. One of the latest thermal insulation used in construction sites with gained popularity is EPS aggregate and mineral binder-based composite. Waste recycling potential, low cost, and ease of installation have brought popularity to the material. This research investigates such material which is formulated by EPS aggregates and pure Portland cement binder thus making EPS aggregate concrete (EAC). Many contractors use such untested and uncertified EAC material due to the low cost of the raw materials. In this research, EAC was taken directly from the construction site. Material physical and mechanical properties are evaluated and compared to commercial counterparts. The drying of the material was investigated, following the practice in the construction sites where upper covering layers are built according to the time schedule ignoring material drying process. Results were compared with commercial EAC. Results indicate that rapid construction schedule with layer-to-layer covering of wet EAC results in dramatically slow drying of such composites, which is one of the main problems for safe use in civil engineering. EAC density from 113 to 169 kg/m3 was measured with an average compressive strength of 49 kPa. The thermal conductivity of the tested EAC was from 0.050 to 0.055 W/(mK).","PeriodicalId":46053,"journal":{"name":"Environmental and Climate Technologies","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Case Study of EPS Aggregate Insulation Material Used in Construction Sites\",\"authors\":\"G. Bumanis, D. Bajare\",\"doi\":\"10.2478/rtuect-2024-0003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Thermal insulation materials used in civil engineering have been developing throughout time. One of the latest thermal insulation used in construction sites with gained popularity is EPS aggregate and mineral binder-based composite. Waste recycling potential, low cost, and ease of installation have brought popularity to the material. This research investigates such material which is formulated by EPS aggregates and pure Portland cement binder thus making EPS aggregate concrete (EAC). Many contractors use such untested and uncertified EAC material due to the low cost of the raw materials. In this research, EAC was taken directly from the construction site. Material physical and mechanical properties are evaluated and compared to commercial counterparts. The drying of the material was investigated, following the practice in the construction sites where upper covering layers are built according to the time schedule ignoring material drying process. Results were compared with commercial EAC. Results indicate that rapid construction schedule with layer-to-layer covering of wet EAC results in dramatically slow drying of such composites, which is one of the main problems for safe use in civil engineering. EAC density from 113 to 169 kg/m3 was measured with an average compressive strength of 49 kPa. The thermal conductivity of the tested EAC was from 0.050 to 0.055 W/(mK).\",\"PeriodicalId\":46053,\"journal\":{\"name\":\"Environmental and Climate Technologies\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental and Climate Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/rtuect-2024-0003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental and Climate Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/rtuect-2024-0003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Case Study of EPS Aggregate Insulation Material Used in Construction Sites
Thermal insulation materials used in civil engineering have been developing throughout time. One of the latest thermal insulation used in construction sites with gained popularity is EPS aggregate and mineral binder-based composite. Waste recycling potential, low cost, and ease of installation have brought popularity to the material. This research investigates such material which is formulated by EPS aggregates and pure Portland cement binder thus making EPS aggregate concrete (EAC). Many contractors use such untested and uncertified EAC material due to the low cost of the raw materials. In this research, EAC was taken directly from the construction site. Material physical and mechanical properties are evaluated and compared to commercial counterparts. The drying of the material was investigated, following the practice in the construction sites where upper covering layers are built according to the time schedule ignoring material drying process. Results were compared with commercial EAC. Results indicate that rapid construction schedule with layer-to-layer covering of wet EAC results in dramatically slow drying of such composites, which is one of the main problems for safe use in civil engineering. EAC density from 113 to 169 kg/m3 was measured with an average compressive strength of 49 kPa. The thermal conductivity of the tested EAC was from 0.050 to 0.055 W/(mK).
期刊介绍:
Environmental and Climate Technologies provides a forum for information on innovation, research and development in the areas of environmental science, energy resources and processes, innovative technologies and energy efficiency. Authors are encouraged to submit manuscripts which cover the range from bioeconomy, sustainable technology development, life cycle analysis, eco-design, climate change mitigation, innovative solutions for pollution reduction to resilience, the energy efficiency of buildings, secure and sustainable energy supplies. The Journal ensures international publicity for original research and innovative work. A variety of themes are covered through a multi-disciplinary approach, one which integrates all aspects of environmental science: -Sustainability of technology development- Bioeconomy- Cleaner production, end of pipe production- Zero emission technologies- Eco-design- Life cycle analysis- Eco-efficiency- Environmental impact assessment- Environmental management systems- Resilience- Energy and carbon markets- Greenhouse gas emission reduction and climate technologies- Methodologies for the evaluation of sustainability- Renewable energy resources- Solar, wind, geothermal, hydro energy, biomass sources: algae, wood, straw, biogas, energetic plants and organic waste- Waste management- Quality of outdoor and indoor environment- Environmental monitoring and evaluation- Heat and power generation, including district heating and/or cooling- Energy efficiency.