{"title":"等价耦合和总变异的一些对偶性结果","authors":"L. Pratelli, P. Rigo","doi":"10.1214/24-ecp586","DOIUrl":null,"url":null,"abstract":". Let (Ω , F ) be a standard Borel space and P ( F ) the collection of all probability measures on F . Let E ⊂ Ω × Ω be a measurable equivalence relation, that is, E ∈ F⊗F and the relation on Ω defined as x ∼ y ⇔ ( x,y ) ∈ E is reflexive, symmetric and transitive. It is shown that there are two σ -fields G 0 and G 1 on Ω such that, for all µ, ν ∈ P ( F ),","PeriodicalId":0,"journal":{"name":"","volume":"40 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Some duality results for equivalence couplings and total variation\",\"authors\":\"L. Pratelli, P. Rigo\",\"doi\":\"10.1214/24-ecp586\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". Let (Ω , F ) be a standard Borel space and P ( F ) the collection of all probability measures on F . Let E ⊂ Ω × Ω be a measurable equivalence relation, that is, E ∈ F⊗F and the relation on Ω defined as x ∼ y ⇔ ( x,y ) ∈ E is reflexive, symmetric and transitive. It is shown that there are two σ -fields G 0 and G 1 on Ω such that, for all µ, ν ∈ P ( F ),\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":\"40 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/24-ecp586\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/24-ecp586","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
.让 (Ω , F ) 是一个标准的 Borel 空间,P ( F ) 是 F 上所有概率度量的集合。让 E ⊂Ω × Ω 是可测等价关系,即 E∈F⊗F 和 Ω 上的关系定义为 x ∼ y ⇔ ( x,y ) ∈ E 是重外向、对称和传递的。证明在 Ω 上有两个 σ - 费尔德 G 0 和 G 1,对于所有 µ,ν ∈ P ( F ) 、
Some duality results for equivalence couplings and total variation
. Let (Ω , F ) be a standard Borel space and P ( F ) the collection of all probability measures on F . Let E ⊂ Ω × Ω be a measurable equivalence relation, that is, E ∈ F⊗F and the relation on Ω defined as x ∼ y ⇔ ( x,y ) ∈ E is reflexive, symmetric and transitive. It is shown that there are two σ -fields G 0 and G 1 on Ω such that, for all µ, ν ∈ P ( F ),