等价耦合和总变异的一些对偶性结果

Pub Date : 2024-01-01 DOI:10.1214/24-ecp586
L. Pratelli, P. Rigo
{"title":"等价耦合和总变异的一些对偶性结果","authors":"L. Pratelli, P. Rigo","doi":"10.1214/24-ecp586","DOIUrl":null,"url":null,"abstract":". Let (Ω , F ) be a standard Borel space and P ( F ) the collection of all probability measures on F . Let E ⊂ Ω × Ω be a measurable equivalence relation, that is, E ∈ F⊗F and the relation on Ω defined as x ∼ y ⇔ ( x,y ) ∈ E is reflexive, symmetric and transitive. It is shown that there are two σ -fields G 0 and G 1 on Ω such that, for all µ, ν ∈ P ( F ),","PeriodicalId":0,"journal":{"name":"","volume":"40 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Some duality results for equivalence couplings and total variation\",\"authors\":\"L. Pratelli, P. Rigo\",\"doi\":\"10.1214/24-ecp586\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". Let (Ω , F ) be a standard Borel space and P ( F ) the collection of all probability measures on F . Let E ⊂ Ω × Ω be a measurable equivalence relation, that is, E ∈ F⊗F and the relation on Ω defined as x ∼ y ⇔ ( x,y ) ∈ E is reflexive, symmetric and transitive. It is shown that there are two σ -fields G 0 and G 1 on Ω such that, for all µ, ν ∈ P ( F ),\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":\"40 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/24-ecp586\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/24-ecp586","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

.让 (Ω , F ) 是一个标准的 Borel 空间,P ( F ) 是 F 上所有概率度量的集合。让 E ⊂Ω × Ω 是可测等价关系,即 E∈F⊗F 和 Ω 上的关系定义为 x ∼ y ⇔ ( x,y ) ∈ E 是重外向、对称和传递的。证明在 Ω 上有两个 σ - 费尔德 G 0 和 G 1,对于所有 µ,ν ∈ P ( F ) 、
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Some duality results for equivalence couplings and total variation
. Let (Ω , F ) be a standard Borel space and P ( F ) the collection of all probability measures on F . Let E ⊂ Ω × Ω be a measurable equivalence relation, that is, E ∈ F⊗F and the relation on Ω defined as x ∼ y ⇔ ( x,y ) ∈ E is reflexive, symmetric and transitive. It is shown that there are two σ -fields G 0 and G 1 on Ω such that, for all µ, ν ∈ P ( F ),
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信