利用制造业废料开发新的生物基建筑材料

IF 1.4 Q4 GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY
Pauls P. Argalis, M. Sinka, M. Andžs, A. Korjakins, D. Bajare
{"title":"利用制造业废料开发新的生物基建筑材料","authors":"Pauls P. Argalis, M. Sinka, M. Andžs, A. Korjakins, D. Bajare","doi":"10.2478/rtuect-2024-0006","DOIUrl":null,"url":null,"abstract":"\n Over the last decade, research has increasingly focused on reducing the use of natural resources and improving waste management in the construction industry. Various possibilities exist for reducing waste in this sector, ranging from using waste as filler materials to developing new binders and building materials. This study focuses on the development of bio-based building materials using waste from the manufacturing of wood-wool cement boards. The binder and filler materials were obtained from the manufacturing waste and used in this research. The developed materials were tested for their visual appearance, macrostructure, material density, thermal conductivity coefficient and compressive strength. The results showed promising data for the self-bearing bio-based building materials, which had similar thermal properties to other bio-based materials and could be used as thermal insulation materials with a thermal conductivity coefficient of 0.0827–0.1172 W/(mK). The material density of the developed bio-based composites was found to be 430–617 kg/m3. By incorporating manufacturing waste into the production process of bio-based building materials, it becomes evident that overall waste from manufacturing plants can be significantly reduced, and the sustainability aspect of wood-cement board manufacturers can be enhanced.","PeriodicalId":46053,"journal":{"name":"Environmental and Climate Technologies","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of New Bio-Based Building Materials by Utilising Manufacturing Waste\",\"authors\":\"Pauls P. Argalis, M. Sinka, M. Andžs, A. Korjakins, D. Bajare\",\"doi\":\"10.2478/rtuect-2024-0006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Over the last decade, research has increasingly focused on reducing the use of natural resources and improving waste management in the construction industry. Various possibilities exist for reducing waste in this sector, ranging from using waste as filler materials to developing new binders and building materials. This study focuses on the development of bio-based building materials using waste from the manufacturing of wood-wool cement boards. The binder and filler materials were obtained from the manufacturing waste and used in this research. The developed materials were tested for their visual appearance, macrostructure, material density, thermal conductivity coefficient and compressive strength. The results showed promising data for the self-bearing bio-based building materials, which had similar thermal properties to other bio-based materials and could be used as thermal insulation materials with a thermal conductivity coefficient of 0.0827–0.1172 W/(mK). The material density of the developed bio-based composites was found to be 430–617 kg/m3. By incorporating manufacturing waste into the production process of bio-based building materials, it becomes evident that overall waste from manufacturing plants can be significantly reduced, and the sustainability aspect of wood-cement board manufacturers can be enhanced.\",\"PeriodicalId\":46053,\"journal\":{\"name\":\"Environmental and Climate Technologies\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental and Climate Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/rtuect-2024-0006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental and Climate Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/rtuect-2024-0006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

在过去十年中,研究越来越多地集中在减少自然资源的使用和改善建筑行业的废物管理上。在这一领域存在着减少废物的各种可能性,从利用废物作为填充材料到开发新的粘合剂和建筑材料,不一而足。本研究的重点是利用木丝水泥板生产过程中产生的废弃物开发生物基建筑材料。粘合剂和填充材料均从生产废料中获取,并用于本研究。对开发的材料进行了外观、宏观结构、材料密度、导热系数和抗压强度测试。结果表明,自承式生物基建筑材料具有良好的热性能,与其他生物基材料类似,可用作隔热材料,导热系数为 0.0827-0.1172 W/(mK)。研究发现,所开发的生物基复合材料的材料密度为 430-617 kg/m3。通过将生产废料纳入生物基建筑材料的生产过程,可以显著减少生产厂的整体废物,提高木质水泥板制造商的可持续发展能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Development of New Bio-Based Building Materials by Utilising Manufacturing Waste
Over the last decade, research has increasingly focused on reducing the use of natural resources and improving waste management in the construction industry. Various possibilities exist for reducing waste in this sector, ranging from using waste as filler materials to developing new binders and building materials. This study focuses on the development of bio-based building materials using waste from the manufacturing of wood-wool cement boards. The binder and filler materials were obtained from the manufacturing waste and used in this research. The developed materials were tested for their visual appearance, macrostructure, material density, thermal conductivity coefficient and compressive strength. The results showed promising data for the self-bearing bio-based building materials, which had similar thermal properties to other bio-based materials and could be used as thermal insulation materials with a thermal conductivity coefficient of 0.0827–0.1172 W/(mK). The material density of the developed bio-based composites was found to be 430–617 kg/m3. By incorporating manufacturing waste into the production process of bio-based building materials, it becomes evident that overall waste from manufacturing plants can be significantly reduced, and the sustainability aspect of wood-cement board manufacturers can be enhanced.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental and Climate Technologies
Environmental and Climate Technologies GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY-
CiteScore
3.10
自引率
28.60%
发文量
0
审稿时长
16 weeks
期刊介绍: Environmental and Climate Technologies provides a forum for information on innovation, research and development in the areas of environmental science, energy resources and processes, innovative technologies and energy efficiency. Authors are encouraged to submit manuscripts which cover the range from bioeconomy, sustainable technology development, life cycle analysis, eco-design, climate change mitigation, innovative solutions for pollution reduction to resilience, the energy efficiency of buildings, secure and sustainable energy supplies. The Journal ensures international publicity for original research and innovative work. A variety of themes are covered through a multi-disciplinary approach, one which integrates all aspects of environmental science: -Sustainability of technology development- Bioeconomy- Cleaner production, end of pipe production- Zero emission technologies- Eco-design- Life cycle analysis- Eco-efficiency- Environmental impact assessment- Environmental management systems- Resilience- Energy and carbon markets- Greenhouse gas emission reduction and climate technologies- Methodologies for the evaluation of sustainability- Renewable energy resources- Solar, wind, geothermal, hydro energy, biomass sources: algae, wood, straw, biogas, energetic plants and organic waste- Waste management- Quality of outdoor and indoor environment- Environmental monitoring and evaluation- Heat and power generation, including district heating and/or cooling- Energy efficiency.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信