全函数差积的唯一性结果

H. Waghamore, N. B. N.
{"title":"全函数差积的唯一性结果","authors":"H. Waghamore, N. B. N.","doi":"10.21608/ejmaa.2024.191354.1090","DOIUrl":null,"url":null,"abstract":". In this research article, we have studied the results of P. Sahoo and H. Karmakar, intending to determine, in any manner, whether it is possible to relax the nature of sharing by replacing the shift of non-constant transcendental entire functions of finite order with the product of shift. In this direction, we have investigated the uniqueness of shift difference polynomials of two entire functions when they share a non-zero polynomial with a finite weight and one being the Mobius transformation of the other satisfying n ≥ 2 d − σ +3, and also when they share a small function with a finite weight satisfying n ≥ m + σ + 5 . We also investigate the same situation when the original functions f and g share the value zero counting multiplicities (CM) satisfying n > 2(Γ 1 + d ) − σ. Our results in this paper extend and generalizes the previous results of P. Sahoo and H. Karmakar [Journal of Contemporary Mathematical Analysis (Armenian Academy of Sciences), 2017, 52 (2), pp. 102-110].","PeriodicalId":91074,"journal":{"name":"Electronic journal of mathematical analysis and applications","volume":"21 9","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"UNIQUENESS RESULTS ON DIFFERENCE PRODUCT OF ENTIRE FUNCTIONS\",\"authors\":\"H. Waghamore, N. B. N.\",\"doi\":\"10.21608/ejmaa.2024.191354.1090\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". In this research article, we have studied the results of P. Sahoo and H. Karmakar, intending to determine, in any manner, whether it is possible to relax the nature of sharing by replacing the shift of non-constant transcendental entire functions of finite order with the product of shift. In this direction, we have investigated the uniqueness of shift difference polynomials of two entire functions when they share a non-zero polynomial with a finite weight and one being the Mobius transformation of the other satisfying n ≥ 2 d − σ +3, and also when they share a small function with a finite weight satisfying n ≥ m + σ + 5 . We also investigate the same situation when the original functions f and g share the value zero counting multiplicities (CM) satisfying n > 2(Γ 1 + d ) − σ. Our results in this paper extend and generalizes the previous results of P. Sahoo and H. Karmakar [Journal of Contemporary Mathematical Analysis (Armenian Academy of Sciences), 2017, 52 (2), pp. 102-110].\",\"PeriodicalId\":91074,\"journal\":{\"name\":\"Electronic journal of mathematical analysis and applications\",\"volume\":\"21 9\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic journal of mathematical analysis and applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21608/ejmaa.2024.191354.1090\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic journal of mathematical analysis and applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21608/ejmaa.2024.191354.1090","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

.在这篇研究文章中,我们研究了 P. Sahoo 和 H. Karmakar 的结果,意在以任何方式确定是否有可能通过用移位乘积代替有限阶非常数超越整个函数的移位来放松共享的性质。在这个方向上,我们研究了两个全函数的移差多项式的唯一性,当它们共享一个具有有限权重的非零多项式,且其中一个是另一个的莫比斯变换,满足 n ≥ 2 d - σ +3 时,以及当它们共享一个具有有限权重的小函数,满足 n ≥ m + σ + 5 时。我们还研究了当原始函数 f 和 g 共享满足 n > 2(Γ 1 + d ) - σ 的零计数乘法(CM)值时的相同情况。我们在本文中的结果扩展并概括了 P. Sahoo 和 H. Karmakar 先前的结果[《当代数学分析期刊》(亚美尼亚科学院),2017 年,52 (2),第 102-110 页]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
UNIQUENESS RESULTS ON DIFFERENCE PRODUCT OF ENTIRE FUNCTIONS
. In this research article, we have studied the results of P. Sahoo and H. Karmakar, intending to determine, in any manner, whether it is possible to relax the nature of sharing by replacing the shift of non-constant transcendental entire functions of finite order with the product of shift. In this direction, we have investigated the uniqueness of shift difference polynomials of two entire functions when they share a non-zero polynomial with a finite weight and one being the Mobius transformation of the other satisfying n ≥ 2 d − σ +3, and also when they share a small function with a finite weight satisfying n ≥ m + σ + 5 . We also investigate the same situation when the original functions f and g share the value zero counting multiplicities (CM) satisfying n > 2(Γ 1 + d ) − σ. Our results in this paper extend and generalizes the previous results of P. Sahoo and H. Karmakar [Journal of Contemporary Mathematical Analysis (Armenian Academy of Sciences), 2017, 52 (2), pp. 102-110].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信