带扩散的 SI 流行模型的分岔和时空模式

Yani Ma, Hailong Yuan
{"title":"带扩散的 SI 流行模型的分岔和时空模式","authors":"Yani Ma, Hailong Yuan","doi":"10.1142/s0218127424500032","DOIUrl":null,"url":null,"abstract":"This paper investigates a spatiotemporal SI epidemiological model under homogeneous Neumann boundary conditions. First, the long-time behavior of the solutions is described, a priori estimates of nonconstant positive solutions are given, and the nonexistence of nonconstant positive steady states is proved by the energy method. Second, the Turing instability of the positive constant steady-state is discussed, and the existence of nonconstant positive steady states is shown by using the degree theory. Moreover, applying the bifurcation theory, we establish the local and global structures of the steady-state bifurcation from simple eigenvalues, and describe some conditions for determining the direction of bifurcation, where the techniques of space decomposition and implicit function theorem are adopted to deal with the local structure of the steady-state bifurcation from double eigenvalues. Finally, some analysis results are supplemented by numerical simulations.","PeriodicalId":13688,"journal":{"name":"Int. J. Bifurc. Chaos","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bifurcation and Spatiotemporal Patterns of SI Epidemic Model with Diffusion\",\"authors\":\"Yani Ma, Hailong Yuan\",\"doi\":\"10.1142/s0218127424500032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates a spatiotemporal SI epidemiological model under homogeneous Neumann boundary conditions. First, the long-time behavior of the solutions is described, a priori estimates of nonconstant positive solutions are given, and the nonexistence of nonconstant positive steady states is proved by the energy method. Second, the Turing instability of the positive constant steady-state is discussed, and the existence of nonconstant positive steady states is shown by using the degree theory. Moreover, applying the bifurcation theory, we establish the local and global structures of the steady-state bifurcation from simple eigenvalues, and describe some conditions for determining the direction of bifurcation, where the techniques of space decomposition and implicit function theorem are adopted to deal with the local structure of the steady-state bifurcation from double eigenvalues. Finally, some analysis results are supplemented by numerical simulations.\",\"PeriodicalId\":13688,\"journal\":{\"name\":\"Int. J. Bifurc. Chaos\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Bifurc. Chaos\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218127424500032\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Bifurc. Chaos","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218127424500032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了同质新曼边界条件下的时空 SI 流行病学模型。首先,描述了解的长期行为,给出了非恒定正解的先验估计,并用能量法证明了非恒定正稳态的不存在。其次,讨论了正恒稳态的图灵不稳定性,并利用度理论证明了非恒正稳态的存在。此外,运用分岔理论,建立了从简单特征值出发的稳态分岔的局部结构和全局结构,并描述了确定分岔方向的一些条件,其中采用了空间分解和隐函数定理等技术来处理从双特征值出发的稳态分岔的局部结构。最后,通过数值模拟补充了一些分析结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bifurcation and Spatiotemporal Patterns of SI Epidemic Model with Diffusion
This paper investigates a spatiotemporal SI epidemiological model under homogeneous Neumann boundary conditions. First, the long-time behavior of the solutions is described, a priori estimates of nonconstant positive solutions are given, and the nonexistence of nonconstant positive steady states is proved by the energy method. Second, the Turing instability of the positive constant steady-state is discussed, and the existence of nonconstant positive steady states is shown by using the degree theory. Moreover, applying the bifurcation theory, we establish the local and global structures of the steady-state bifurcation from simple eigenvalues, and describe some conditions for determining the direction of bifurcation, where the techniques of space decomposition and implicit function theorem are adopted to deal with the local structure of the steady-state bifurcation from double eigenvalues. Finally, some analysis results are supplemented by numerical simulations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信