用于水果和蔬菜保鲜的多孔蒸发冷却器的瞬态性能评估

IF 1.9 4区 工程技术 Q4 ENERGY & FUELS
Rosemary O. Paul-Okore, Chima C. Ike, Godswill N. Nwaji, O. C. Nwufo, N. Ogueke, E. E. Anyanwu
{"title":"用于水果和蔬菜保鲜的多孔蒸发冷却器的瞬态性能评估","authors":"Rosemary O. Paul-Okore, Chima C. Ike, Godswill N. Nwaji, O. C. Nwufo, N. Ogueke, E. E. Anyanwu","doi":"10.1063/5.0179085","DOIUrl":null,"url":null,"abstract":"A transient performance of a porous evaporative cooling system was carried out using mathematical models developed from the first principles. The models are based on energy and mass balance analysis on different sections of the evaporative cooler. The developed models were solved using a FlexPDE computational fluid dynamics analyzer, based on the finite element, to generate numerical solutions. The models developed were validated using experimental data from a properly designed, constructed, and tested an evaporative cooler and subsequently used to determine the evaporative cooler performance during four different periods of the year covering the two major climatic seasons experienced in Nigeria. Results obtained showed a reduction in the storage chamber temperature by up to 9 °C from the ambient air condition which was within the range of 22–33 °C. Furthermore, it was observed that it performs best during the dry seasons as compared to the wet season. However, during both seasons, the cooling chamber temperature significantly remained below the ambient value. Thus, the evaporative cooler can serve as an effective means of reducing heat-induced post-harvest losses incurred by farmers while also helping in combating climate change since it uses only water and does not require any external energy input.","PeriodicalId":16953,"journal":{"name":"Journal of Renewable and Sustainable Energy","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A transient performance evaluation of a porous evaporative cooler for preservation of fruits and vegetables\",\"authors\":\"Rosemary O. Paul-Okore, Chima C. Ike, Godswill N. Nwaji, O. C. Nwufo, N. Ogueke, E. E. Anyanwu\",\"doi\":\"10.1063/5.0179085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A transient performance of a porous evaporative cooling system was carried out using mathematical models developed from the first principles. The models are based on energy and mass balance analysis on different sections of the evaporative cooler. The developed models were solved using a FlexPDE computational fluid dynamics analyzer, based on the finite element, to generate numerical solutions. The models developed were validated using experimental data from a properly designed, constructed, and tested an evaporative cooler and subsequently used to determine the evaporative cooler performance during four different periods of the year covering the two major climatic seasons experienced in Nigeria. Results obtained showed a reduction in the storage chamber temperature by up to 9 °C from the ambient air condition which was within the range of 22–33 °C. Furthermore, it was observed that it performs best during the dry seasons as compared to the wet season. However, during both seasons, the cooling chamber temperature significantly remained below the ambient value. Thus, the evaporative cooler can serve as an effective means of reducing heat-induced post-harvest losses incurred by farmers while also helping in combating climate change since it uses only water and does not require any external energy input.\",\"PeriodicalId\":16953,\"journal\":{\"name\":\"Journal of Renewable and Sustainable Energy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Renewable and Sustainable Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0179085\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Renewable and Sustainable Energy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0179085","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

根据第一原理开发的数学模型对多孔蒸发冷却系统的瞬态性能进行了分析。这些模型基于蒸发冷却器不同部分的能量和质量平衡分析。使用基于有限元的 FlexPDE 计算流体动力学分析仪对所开发的模型进行求解,以生成数值解。利用适当设计、建造和测试的蒸发冷却器的实验数据对所开发的模型进行了验证,随后用于确定蒸发冷却器在一年中四个不同时期的性能,涵盖尼日利亚经历的两个主要气候季节。结果表明,与 22-33 °C 范围内的环境空气条件相比,储藏室温度最多可降低 9 °C。此外,据观察,与雨季相比,旱季的性能最佳。不过,在这两个季节,冷却室的温度都明显低于环境温度。因此,蒸发冷却器可以作为一种有效的手段,减少农民因高温而造成的收获后损失,同时也有助于应对气候变化,因为它只使用水,不需要任何外部能源输入。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A transient performance evaluation of a porous evaporative cooler for preservation of fruits and vegetables
A transient performance of a porous evaporative cooling system was carried out using mathematical models developed from the first principles. The models are based on energy and mass balance analysis on different sections of the evaporative cooler. The developed models were solved using a FlexPDE computational fluid dynamics analyzer, based on the finite element, to generate numerical solutions. The models developed were validated using experimental data from a properly designed, constructed, and tested an evaporative cooler and subsequently used to determine the evaporative cooler performance during four different periods of the year covering the two major climatic seasons experienced in Nigeria. Results obtained showed a reduction in the storage chamber temperature by up to 9 °C from the ambient air condition which was within the range of 22–33 °C. Furthermore, it was observed that it performs best during the dry seasons as compared to the wet season. However, during both seasons, the cooling chamber temperature significantly remained below the ambient value. Thus, the evaporative cooler can serve as an effective means of reducing heat-induced post-harvest losses incurred by farmers while also helping in combating climate change since it uses only water and does not require any external energy input.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Renewable and Sustainable Energy
Journal of Renewable and Sustainable Energy ENERGY & FUELS-ENERGY & FUELS
CiteScore
4.30
自引率
12.00%
发文量
122
审稿时长
4.2 months
期刊介绍: The Journal of Renewable and Sustainable Energy (JRSE) is an interdisciplinary, peer-reviewed journal covering all areas of renewable and sustainable energy relevant to the physical science and engineering communities. The interdisciplinary approach of the publication ensures that the editors draw from researchers worldwide in a diverse range of fields. Topics covered include: Renewable energy economics and policy Renewable energy resource assessment Solar energy: photovoltaics, solar thermal energy, solar energy for fuels Wind energy: wind farms, rotors and blades, on- and offshore wind conditions, aerodynamics, fluid dynamics Bioenergy: biofuels, biomass conversion, artificial photosynthesis Distributed energy generation: rooftop PV, distributed fuel cells, distributed wind, micro-hydrogen power generation Power distribution & systems modeling: power electronics and controls, smart grid Energy efficient buildings: smart windows, PV, wind, power management Energy conversion: flexoelectric, piezoelectric, thermoelectric, other technologies Energy storage: batteries, supercapacitors, hydrogen storage, other fuels Fuel cells: proton exchange membrane cells, solid oxide cells, hybrid fuel cells, other Marine and hydroelectric energy: dams, tides, waves, other Transportation: alternative vehicle technologies, plug-in technologies, other Geothermal energy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信