Copulas.jl:完全符合 Distributions.jl 标准的 copulapackage

Oskar Laverny, Santiago Jimenez
{"title":"Copulas.jl:完全符合 Distributions.jl 标准的 copulapackage","authors":"Oskar Laverny, Santiago Jimenez","doi":"10.21105/joss.06189","DOIUrl":null,"url":null,"abstract":"Copulas are functions that describe dependence structures of random vectors, without describing their univariate marginals. In statistics, the separation is sometimes useful, the quality and/or quantity of available information on these two objects might differ. This separation can be formally stated through Sklar's theorem. Copulas are standard tools in probability and statistics, with a wide range of applications from biostatistics, finance or medicine, to fuzzy logic, global sensitivity and broader analysis. The Julia package \\texttt{Copulas.jl} brings most standard copula-related features into native Julia: random number generation, density and distribution function evaluations, fitting, construction of multivariate models through Sklar's theorem, and many more related functionalities. Copulas being fundamentally distributions of random vectors, we fully comply with the \\texttt{Distributions.jl} API, the Julian standard for implementation of random variables and random vectors. This compliance allows interoperability with other packages based on this API such as, e.g., \\texttt{Turing.jl} and several others.","PeriodicalId":503081,"journal":{"name":"Journal of Open Source Software","volume":"63 1-4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Copulas.jl: A fully Distributions.jl-compliant copula\\npackage\",\"authors\":\"Oskar Laverny, Santiago Jimenez\",\"doi\":\"10.21105/joss.06189\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Copulas are functions that describe dependence structures of random vectors, without describing their univariate marginals. In statistics, the separation is sometimes useful, the quality and/or quantity of available information on these two objects might differ. This separation can be formally stated through Sklar's theorem. Copulas are standard tools in probability and statistics, with a wide range of applications from biostatistics, finance or medicine, to fuzzy logic, global sensitivity and broader analysis. The Julia package \\\\texttt{Copulas.jl} brings most standard copula-related features into native Julia: random number generation, density and distribution function evaluations, fitting, construction of multivariate models through Sklar's theorem, and many more related functionalities. Copulas being fundamentally distributions of random vectors, we fully comply with the \\\\texttt{Distributions.jl} API, the Julian standard for implementation of random variables and random vectors. This compliance allows interoperability with other packages based on this API such as, e.g., \\\\texttt{Turing.jl} and several others.\",\"PeriodicalId\":503081,\"journal\":{\"name\":\"Journal of Open Source Software\",\"volume\":\"63 1-4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Open Source Software\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21105/joss.06189\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Open Source Software","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21105/joss.06189","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Copulas 是描述随机向量依赖结构的函数,而不描述其单变量边际。在统计学中,这种分离有时很有用,因为这两个对象的可用信息的质量和/或数量可能不同。这种分离可以通过斯克拉尔定理正式说明。Copulas 是概率论和统计学中的标准工具,应用广泛,从生物统计、金融或医学,到模糊逻辑、全局敏感性和更广泛的分析。Julia 软件包 \texttt{Copulas.jl}将大多数与Copulas相关的标准功能引入到本地Julia软件包中:随机数生成、密度和分布函数评估、拟合、通过斯克拉尔定理构建多元模型,以及更多相关功能。从根本上说,Copulas 是随机向量的分布,因此我们完全符合 \texttt{Distributions.jl} API。API,这是实现随机变量和随机向量的朱利安标准。这一标准允许我们与其他基于该 API 的软件包进行互操作,例如 \texttt{Turing.jl} 和其他一些软件包。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Copulas.jl: A fully Distributions.jl-compliant copula package
Copulas are functions that describe dependence structures of random vectors, without describing their univariate marginals. In statistics, the separation is sometimes useful, the quality and/or quantity of available information on these two objects might differ. This separation can be formally stated through Sklar's theorem. Copulas are standard tools in probability and statistics, with a wide range of applications from biostatistics, finance or medicine, to fuzzy logic, global sensitivity and broader analysis. The Julia package \texttt{Copulas.jl} brings most standard copula-related features into native Julia: random number generation, density and distribution function evaluations, fitting, construction of multivariate models through Sklar's theorem, and many more related functionalities. Copulas being fundamentally distributions of random vectors, we fully comply with the \texttt{Distributions.jl} API, the Julian standard for implementation of random variables and random vectors. This compliance allows interoperability with other packages based on this API such as, e.g., \texttt{Turing.jl} and several others.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信