PQCMC:后量子密码学麦克利什-陈隐含证书计划

Abel C. H. Chen
{"title":"PQCMC:后量子密码学麦克利什-陈隐含证书计划","authors":"Abel C. H. Chen","doi":"10.48550/arXiv.2401.13691","DOIUrl":null,"url":null,"abstract":"In recent years, the elliptic curve Qu-Vanstone (ECQV) implicit certificate scheme has found application in security credential management systems (SCMS) and secure vehicle-to-everything (V2X) communication to issue pseudonymous certificates. However, the vulnerability of elliptic-curve cryptography (ECC) to polynomial-time attacks posed by quantum computing raises concerns. In order to enhance resistance against quantum computing threats, various post-quantum cryptography methods have been adopted as standard (e.g. Dilithium) or candidate standard methods (e.g. McEliece cryptography), but state of the art has proven to be challenging to implement implicit certificates using lattice-based cryptography methods. Therefore, this study proposes a post-quantum cryptography McEliece-Chen (PQCMC) based on an efficient random invertible matrix generation method to issue pseudonymous certificates with less computation time. The study provides mathematical models to validate the key expansion process for implicit certificates. Furthermore, comprehensive security evaluations and discussions are conducted to demonstrate that distinct implicit certificates can be linked to the same end entity. In experiments, a comparison is conducted between the certificate length and computation time to evaluate the performance of the proposed PQCMC. This study demonstrates the viability of the implicit certificate scheme based on PQC as a means of countering quantum computing threats.","PeriodicalId":508905,"journal":{"name":"IACR Cryptol. ePrint Arch.","volume":"291 3","pages":"1657"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PQCMC: Post-Quantum Cryptography McEliece-Chen Implicit Certificate Scheme\",\"authors\":\"Abel C. H. Chen\",\"doi\":\"10.48550/arXiv.2401.13691\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, the elliptic curve Qu-Vanstone (ECQV) implicit certificate scheme has found application in security credential management systems (SCMS) and secure vehicle-to-everything (V2X) communication to issue pseudonymous certificates. However, the vulnerability of elliptic-curve cryptography (ECC) to polynomial-time attacks posed by quantum computing raises concerns. In order to enhance resistance against quantum computing threats, various post-quantum cryptography methods have been adopted as standard (e.g. Dilithium) or candidate standard methods (e.g. McEliece cryptography), but state of the art has proven to be challenging to implement implicit certificates using lattice-based cryptography methods. Therefore, this study proposes a post-quantum cryptography McEliece-Chen (PQCMC) based on an efficient random invertible matrix generation method to issue pseudonymous certificates with less computation time. The study provides mathematical models to validate the key expansion process for implicit certificates. Furthermore, comprehensive security evaluations and discussions are conducted to demonstrate that distinct implicit certificates can be linked to the same end entity. In experiments, a comparison is conducted between the certificate length and computation time to evaluate the performance of the proposed PQCMC. This study demonstrates the viability of the implicit certificate scheme based on PQC as a means of countering quantum computing threats.\",\"PeriodicalId\":508905,\"journal\":{\"name\":\"IACR Cryptol. ePrint Arch.\",\"volume\":\"291 3\",\"pages\":\"1657\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IACR Cryptol. ePrint Arch.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2401.13691\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IACR Cryptol. ePrint Arch.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2401.13691","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近年来,椭圆曲线Qu-Vanstone(ECQV)隐式证书方案已在安全凭证管理系统(SCMS)和安全车对物(V2X)通信中得到应用,用于签发假名证书。然而,椭圆曲线加密算法(ECC)在量子计算的多项式时间攻击面前的脆弱性引起了人们的关注。为了增强对量子计算威胁的抵御能力,各种后量子密码学方法已被采纳为标准方法(如 Dilithium)或候选标准方法(如 McEliece 密码学),但实践证明,使用基于网格的密码学方法来实现隐式证书具有挑战性。因此,本研究提出了一种基于高效随机可逆矩阵生成方法的后量子密码学 McEliece-Chen (PQCMC),以较少的计算时间签发假名证书。研究提供了数学模型来验证隐式证书的密钥扩展过程。此外,还进行了全面的安全评估和讨论,以证明不同的隐式证书可以链接到同一个终端实体。在实验中,对证书长度和计算时间进行了比较,以评估所提出的 PQCMC 的性能。这项研究证明了基于 PQC 的隐式证书方案作为应对量子计算威胁的一种手段的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PQCMC: Post-Quantum Cryptography McEliece-Chen Implicit Certificate Scheme
In recent years, the elliptic curve Qu-Vanstone (ECQV) implicit certificate scheme has found application in security credential management systems (SCMS) and secure vehicle-to-everything (V2X) communication to issue pseudonymous certificates. However, the vulnerability of elliptic-curve cryptography (ECC) to polynomial-time attacks posed by quantum computing raises concerns. In order to enhance resistance against quantum computing threats, various post-quantum cryptography methods have been adopted as standard (e.g. Dilithium) or candidate standard methods (e.g. McEliece cryptography), but state of the art has proven to be challenging to implement implicit certificates using lattice-based cryptography methods. Therefore, this study proposes a post-quantum cryptography McEliece-Chen (PQCMC) based on an efficient random invertible matrix generation method to issue pseudonymous certificates with less computation time. The study provides mathematical models to validate the key expansion process for implicit certificates. Furthermore, comprehensive security evaluations and discussions are conducted to demonstrate that distinct implicit certificates can be linked to the same end entity. In experiments, a comparison is conducted between the certificate length and computation time to evaluate the performance of the proposed PQCMC. This study demonstrates the viability of the implicit certificate scheme based on PQC as a means of countering quantum computing threats.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信