纳米流体在有热量产生的垂直表面上的混合对流双扩散 MHD 停滞点流动的意义

Ammara Islam, Zafar Mahmood, U. Khan
{"title":"纳米流体在有热量产生的垂直表面上的混合对流双扩散 MHD 停滞点流动的意义","authors":"Ammara Islam, Zafar Mahmood, U. Khan","doi":"10.1177/23977914231210798","DOIUrl":null,"url":null,"abstract":"The mixed convection double-diffusive MHD flow of boundary layer nanofluids above vertical region is designed. This flow is explained near stagnation point along with heat generation. Using Buongiorno’s model, the properties of Brownian motion, thermophoresis, and diffusion of regular and cross type are included. Using appropriate similarity transformations of the local similarity technique, non-linear unstable PDEs in governing model converted to non-linear ODEs, which were then evaluated numerically by the Keller-box method (KBM) using the computational software MATLAB 2021a. Graphical analysis of possessions of parameters on the boundary layers in profiles of velocity, solute concentration, temperature and nanoparticle concentration is illustrated. The statistics of the reduced Sherwood number and the reduced Nusselt number for solute and nanoparticles in cases of assisting flow and opposing flow are added as well to the results. The fastest rate of heat transfer is achieved in a scenario with a negligible thermophoresis effect. The thermophoresis parameter and the buoyancy parameter of the regular double diffusive appear to rise rather than decrease in the nanoparticles lowered Sherwood number, while the Brownian motion parameter rises. The temperature and layer thickness for heat generation have a quite opposite effect. When the computed numerical findings are compared to earlier published work, it is discovered to be in good percentage. The need for numerous industrial applications and improvements in the efficiency and energy consumption of systems, such as cooling and heating transportation, in water heaters, nuclear reactors, optical devices, turbines, aerodynamics, and electronics, have led to the establishment of this investigation.","PeriodicalId":516661,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanomaterials, Nanoengineering and Nanosystems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Significance of mixed convective double diffusive MHD stagnation point flow of nanofluid over a vertical surface with heat generation\",\"authors\":\"Ammara Islam, Zafar Mahmood, U. Khan\",\"doi\":\"10.1177/23977914231210798\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The mixed convection double-diffusive MHD flow of boundary layer nanofluids above vertical region is designed. This flow is explained near stagnation point along with heat generation. Using Buongiorno’s model, the properties of Brownian motion, thermophoresis, and diffusion of regular and cross type are included. Using appropriate similarity transformations of the local similarity technique, non-linear unstable PDEs in governing model converted to non-linear ODEs, which were then evaluated numerically by the Keller-box method (KBM) using the computational software MATLAB 2021a. Graphical analysis of possessions of parameters on the boundary layers in profiles of velocity, solute concentration, temperature and nanoparticle concentration is illustrated. The statistics of the reduced Sherwood number and the reduced Nusselt number for solute and nanoparticles in cases of assisting flow and opposing flow are added as well to the results. The fastest rate of heat transfer is achieved in a scenario with a negligible thermophoresis effect. The thermophoresis parameter and the buoyancy parameter of the regular double diffusive appear to rise rather than decrease in the nanoparticles lowered Sherwood number, while the Brownian motion parameter rises. The temperature and layer thickness for heat generation have a quite opposite effect. When the computed numerical findings are compared to earlier published work, it is discovered to be in good percentage. The need for numerous industrial applications and improvements in the efficiency and energy consumption of systems, such as cooling and heating transportation, in water heaters, nuclear reactors, optical devices, turbines, aerodynamics, and electronics, have led to the establishment of this investigation.\",\"PeriodicalId\":516661,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanomaterials, Nanoengineering and Nanosystems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanomaterials, Nanoengineering and Nanosystems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/23977914231210798\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanomaterials, Nanoengineering and Nanosystems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/23977914231210798","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

设计了垂直区域上方边界层纳米流体的混合对流双扩散 MHD 流动。这种流动在停滞点附近与热量产生一起被解释。使用 Buongiorno 模型,包含了布朗运动、热泳以及常规和交叉类型扩散的特性。利用局部相似性技术的适当相似性转换,将治理模型中的非线性不稳定 PDE 转换为非线性 ODE,然后使用 MATLAB 2021a 计算软件通过 Keller-box 方法(KBM)对其进行数值评估。图解分析了速度、溶质浓度、温度和纳米粒子浓度剖面中边界层参数的占有情况。结果中还添加了助流和逆流情况下溶质和纳米颗粒的谢尔伍德数和努塞尔特数降低的统计数据。在热泳效应可忽略不计的情况下,传热速度最快。当纳米粒子的舍伍德数降低时,常规双扩散的热泳参数和浮力参数不降反升,而布朗运动参数则上升。产生热量的温度和层厚度的影响则截然相反。将计算得出的数值结果与早先发表的研究成果进行比较,发现两者的比例相当。大量工业应用的需求以及系统效率和能源消耗的改善,如冷却和加热运输、热水器、核反应堆、光学设备、涡轮机、空气动力学和电子学等,促成了这项研究的建立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Significance of mixed convective double diffusive MHD stagnation point flow of nanofluid over a vertical surface with heat generation
The mixed convection double-diffusive MHD flow of boundary layer nanofluids above vertical region is designed. This flow is explained near stagnation point along with heat generation. Using Buongiorno’s model, the properties of Brownian motion, thermophoresis, and diffusion of regular and cross type are included. Using appropriate similarity transformations of the local similarity technique, non-linear unstable PDEs in governing model converted to non-linear ODEs, which were then evaluated numerically by the Keller-box method (KBM) using the computational software MATLAB 2021a. Graphical analysis of possessions of parameters on the boundary layers in profiles of velocity, solute concentration, temperature and nanoparticle concentration is illustrated. The statistics of the reduced Sherwood number and the reduced Nusselt number for solute and nanoparticles in cases of assisting flow and opposing flow are added as well to the results. The fastest rate of heat transfer is achieved in a scenario with a negligible thermophoresis effect. The thermophoresis parameter and the buoyancy parameter of the regular double diffusive appear to rise rather than decrease in the nanoparticles lowered Sherwood number, while the Brownian motion parameter rises. The temperature and layer thickness for heat generation have a quite opposite effect. When the computed numerical findings are compared to earlier published work, it is discovered to be in good percentage. The need for numerous industrial applications and improvements in the efficiency and energy consumption of systems, such as cooling and heating transportation, in water heaters, nuclear reactors, optical devices, turbines, aerodynamics, and electronics, have led to the establishment of this investigation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信