加密货币投资组合的风险评估:复合隐马尔科夫因子分析框架

Mohamed Saidane
{"title":"加密货币投资组合的风险评估:复合隐马尔科夫因子分析框架","authors":"Mohamed Saidane","doi":"10.19139/soic-2310-5070-1837","DOIUrl":null,"url":null,"abstract":"In this paper, we deal with the estimation of two widely used risk measures such as Value-at-Risk (VaR) and Expected Shortfall (ES) in a cryptocurrency context. To face the presence of regime switching in the cryptocurrency volatilities and the dynamic interconnection between them, we propose a Monte Carlo-based approach using heteroskedastic factor analysis and hidden Markov models (HMM) combined with a structured variational Expectation-Maximization (EM) learning approach. This composite approach allows the construction of a diversified portfolio and determines an optimal allocation strategy making it possible to minimize the conditional risk of the portfolio and maximize the return. The out-of-sample prediction experiments show that the composite factorial HMM approach performs better, in terms of prediction accuracy, than some other baseline methods presented in the literature. Moreover, our results show that the proposed methodology provides the best performing crypto-asset allocation strategies and it is also clearly superior to the existing methods in VaR and ES predictions.","PeriodicalId":131002,"journal":{"name":"Statistics, Optimization & Information Computing","volume":"3 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Risk assessment in cryptocurrency portfolios: a composite hidden Markov factor analysis framework\",\"authors\":\"Mohamed Saidane\",\"doi\":\"10.19139/soic-2310-5070-1837\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we deal with the estimation of two widely used risk measures such as Value-at-Risk (VaR) and Expected Shortfall (ES) in a cryptocurrency context. To face the presence of regime switching in the cryptocurrency volatilities and the dynamic interconnection between them, we propose a Monte Carlo-based approach using heteroskedastic factor analysis and hidden Markov models (HMM) combined with a structured variational Expectation-Maximization (EM) learning approach. This composite approach allows the construction of a diversified portfolio and determines an optimal allocation strategy making it possible to minimize the conditional risk of the portfolio and maximize the return. The out-of-sample prediction experiments show that the composite factorial HMM approach performs better, in terms of prediction accuracy, than some other baseline methods presented in the literature. Moreover, our results show that the proposed methodology provides the best performing crypto-asset allocation strategies and it is also clearly superior to the existing methods in VaR and ES predictions.\",\"PeriodicalId\":131002,\"journal\":{\"name\":\"Statistics, Optimization & Information Computing\",\"volume\":\"3 6\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistics, Optimization & Information Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.19139/soic-2310-5070-1837\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics, Optimization & Information Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19139/soic-2310-5070-1837","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们讨论了在加密货币背景下对风险价值(VaR)和预期缺口(ES)这两种广泛使用的风险度量的估算。面对加密货币波动率中存在的制度转换以及它们之间的动态相互联系,我们提出了一种基于蒙特卡罗的方法,使用异方差因子分析和隐马尔可夫模型(HMM),并结合结构化变异期望最大化(EM)学习方法。这种复合方法可以构建多样化的投资组合,并确定最佳分配策略,从而使投资组合的条件风险最小化,收益最大化。样本外预测实验表明,复合因子 HMM 方法在预测准确性方面优于文献中介绍的其他一些基准方法。此外,我们的结果表明,所提出的方法提供了性能最佳的加密资产配置策略,而且在 VaR 和 ES 预测方面也明显优于现有方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Risk assessment in cryptocurrency portfolios: a composite hidden Markov factor analysis framework
In this paper, we deal with the estimation of two widely used risk measures such as Value-at-Risk (VaR) and Expected Shortfall (ES) in a cryptocurrency context. To face the presence of regime switching in the cryptocurrency volatilities and the dynamic interconnection between them, we propose a Monte Carlo-based approach using heteroskedastic factor analysis and hidden Markov models (HMM) combined with a structured variational Expectation-Maximization (EM) learning approach. This composite approach allows the construction of a diversified portfolio and determines an optimal allocation strategy making it possible to minimize the conditional risk of the portfolio and maximize the return. The out-of-sample prediction experiments show that the composite factorial HMM approach performs better, in terms of prediction accuracy, than some other baseline methods presented in the literature. Moreover, our results show that the proposed methodology provides the best performing crypto-asset allocation strategies and it is also clearly superior to the existing methods in VaR and ES predictions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信