Dimas Chaerul Ekty Saputra, Alfian Ma'arif, K. Sunat
{"title":"优化预测性能:用于糖尿病鉴定的堆叠多核支持向量机随机森林模型中的超参数调整","authors":"Dimas Chaerul Ekty Saputra, Alfian Ma'arif, K. Sunat","doi":"10.18196/jrc.v4i6.20898","DOIUrl":null,"url":null,"abstract":"This study addresses the necessity for more advanced diagnostic tools in managing diabetes, a chronic metabolic disorder that leads to disruptions in glucose, lipid, and protein metabolism caused by insufficient insulin activity. The research investigates the innovative application of machine learning models, specifically Stacked Multi-Kernel Support Vector Machines Random Forest (SMKSVM-RF), to determine their effectiveness in identifying complex patterns in medical data. The innovative ensemble learning method SMKSVM-RF combines the strengths of Support Vector Machines (SVMs) and Random Forests (RFs) to leverage their diversity and complementary features. The SVM component implements multiple kernels to identify unique data patterns, while the RF component consists of an ensemble of decision trees to ensure reliable predictions. Integrating these models into a stacked architecture allows SMKSVM-RF to enhance the overall predictive performance for classification or regression tasks by optimizing their strengths. A significant finding of this study is the introduction of SMKSVM-RF, which displays an impressive 73.37% accuracy rate in the confusion matrix. Additionally, its recall is 71.62%, its precision is 70.13%, and it has a noteworthy F1-Score of 71.34%. This innovative technique shows potential for enhancing current methods and developing into an ideal healthcare system, signifying a noteworthy step forward in diabetes detection. The results emphasize the importance of sophisticated machine learning methods, highlighting how SMKSVM-RF can improve diagnostic precision and aid in the continual advancement of healthcare systems for more effective diabetes management.","PeriodicalId":443428,"journal":{"name":"Journal of Robotics and Control (JRC)","volume":"60 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing Predictive Performance: Hyperparameter Tuning in Stacked Multi-Kernel Support Vector Machine Random Forest Models for Diabetes Identification\",\"authors\":\"Dimas Chaerul Ekty Saputra, Alfian Ma'arif, K. Sunat\",\"doi\":\"10.18196/jrc.v4i6.20898\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study addresses the necessity for more advanced diagnostic tools in managing diabetes, a chronic metabolic disorder that leads to disruptions in glucose, lipid, and protein metabolism caused by insufficient insulin activity. The research investigates the innovative application of machine learning models, specifically Stacked Multi-Kernel Support Vector Machines Random Forest (SMKSVM-RF), to determine their effectiveness in identifying complex patterns in medical data. The innovative ensemble learning method SMKSVM-RF combines the strengths of Support Vector Machines (SVMs) and Random Forests (RFs) to leverage their diversity and complementary features. The SVM component implements multiple kernels to identify unique data patterns, while the RF component consists of an ensemble of decision trees to ensure reliable predictions. Integrating these models into a stacked architecture allows SMKSVM-RF to enhance the overall predictive performance for classification or regression tasks by optimizing their strengths. A significant finding of this study is the introduction of SMKSVM-RF, which displays an impressive 73.37% accuracy rate in the confusion matrix. Additionally, its recall is 71.62%, its precision is 70.13%, and it has a noteworthy F1-Score of 71.34%. This innovative technique shows potential for enhancing current methods and developing into an ideal healthcare system, signifying a noteworthy step forward in diabetes detection. The results emphasize the importance of sophisticated machine learning methods, highlighting how SMKSVM-RF can improve diagnostic precision and aid in the continual advancement of healthcare systems for more effective diabetes management.\",\"PeriodicalId\":443428,\"journal\":{\"name\":\"Journal of Robotics and Control (JRC)\",\"volume\":\"60 6\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Robotics and Control (JRC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18196/jrc.v4i6.20898\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Robotics and Control (JRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18196/jrc.v4i6.20898","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optimizing Predictive Performance: Hyperparameter Tuning in Stacked Multi-Kernel Support Vector Machine Random Forest Models for Diabetes Identification
This study addresses the necessity for more advanced diagnostic tools in managing diabetes, a chronic metabolic disorder that leads to disruptions in glucose, lipid, and protein metabolism caused by insufficient insulin activity. The research investigates the innovative application of machine learning models, specifically Stacked Multi-Kernel Support Vector Machines Random Forest (SMKSVM-RF), to determine their effectiveness in identifying complex patterns in medical data. The innovative ensemble learning method SMKSVM-RF combines the strengths of Support Vector Machines (SVMs) and Random Forests (RFs) to leverage their diversity and complementary features. The SVM component implements multiple kernels to identify unique data patterns, while the RF component consists of an ensemble of decision trees to ensure reliable predictions. Integrating these models into a stacked architecture allows SMKSVM-RF to enhance the overall predictive performance for classification or regression tasks by optimizing their strengths. A significant finding of this study is the introduction of SMKSVM-RF, which displays an impressive 73.37% accuracy rate in the confusion matrix. Additionally, its recall is 71.62%, its precision is 70.13%, and it has a noteworthy F1-Score of 71.34%. This innovative technique shows potential for enhancing current methods and developing into an ideal healthcare system, signifying a noteworthy step forward in diabetes detection. The results emphasize the importance of sophisticated machine learning methods, highlighting how SMKSVM-RF can improve diagnostic precision and aid in the continual advancement of healthcare systems for more effective diabetes management.