生物工程和生命科学中的淬火反应-扩散系统

Salim Mesbahi, Samiha Djemai, Khaoula Imane Saffidine
{"title":"生物工程和生命科学中的淬火反应-扩散系统","authors":"Salim Mesbahi, Samiha Djemai, Khaoula Imane Saffidine","doi":"10.47191/etj/v9i01.17","DOIUrl":null,"url":null,"abstract":"This research paper revolves around investigating the phenomenon of quenching in reaction-diffusion systems and highlighting its significance. The primary focus is on analyzing a specific type of parabolic singular reaction-diffusion model that incorporates positive Dirichlet boundary conditions. The objective is to establish the sufficiency of certain conditions for quenching to occur within a finite time frame and to demonstrate the global existence of solutions. The novelty of this paper lies in the simplicity of the conditions imposed on the nonlinearity. This simplicity allows us to choose it from a wide range of possibilities, thus facilitating the application of the model to numerous singular reaction-diffusion phenomena. To bolster our findings, we will present various real-world applications in the fields of bioengineering and life sciences, showcasing the practical relevance of quenching phenomena. Finally, the paper ends with a conclusion and some potential future perspectives for further research in this area.","PeriodicalId":11630,"journal":{"name":"Engineering and Technology Journal","volume":"16 7","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quenching Reaction-Diffusion Systems in Bioengineering and Life Sciences\",\"authors\":\"Salim Mesbahi, Samiha Djemai, Khaoula Imane Saffidine\",\"doi\":\"10.47191/etj/v9i01.17\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research paper revolves around investigating the phenomenon of quenching in reaction-diffusion systems and highlighting its significance. The primary focus is on analyzing a specific type of parabolic singular reaction-diffusion model that incorporates positive Dirichlet boundary conditions. The objective is to establish the sufficiency of certain conditions for quenching to occur within a finite time frame and to demonstrate the global existence of solutions. The novelty of this paper lies in the simplicity of the conditions imposed on the nonlinearity. This simplicity allows us to choose it from a wide range of possibilities, thus facilitating the application of the model to numerous singular reaction-diffusion phenomena. To bolster our findings, we will present various real-world applications in the fields of bioengineering and life sciences, showcasing the practical relevance of quenching phenomena. Finally, the paper ends with a conclusion and some potential future perspectives for further research in this area.\",\"PeriodicalId\":11630,\"journal\":{\"name\":\"Engineering and Technology Journal\",\"volume\":\"16 7\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering and Technology Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47191/etj/v9i01.17\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering and Technology Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47191/etj/v9i01.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究论文围绕研究反应-扩散系统中的淬火现象并强调其重要性展开。主要重点是分析一种特定类型的抛物线奇异反应扩散模型,该模型包含正狄利克特边界条件。目的是确定在有限时间内发生淬火的某些条件的充分性,并证明解的全局存在性。本文的新颖之处在于对非线性施加的条件非常简单。这种简单性使我们可以从多种可能性中进行选择,从而便于将模型应用于众多奇异的反应-扩散现象。为了支持我们的研究成果,我们将介绍生物工程和生命科学领域的各种实际应用,展示淬火现象的实际意义。最后,本文以结论和该领域进一步研究的潜在前景作为结束语。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quenching Reaction-Diffusion Systems in Bioengineering and Life Sciences
This research paper revolves around investigating the phenomenon of quenching in reaction-diffusion systems and highlighting its significance. The primary focus is on analyzing a specific type of parabolic singular reaction-diffusion model that incorporates positive Dirichlet boundary conditions. The objective is to establish the sufficiency of certain conditions for quenching to occur within a finite time frame and to demonstrate the global existence of solutions. The novelty of this paper lies in the simplicity of the conditions imposed on the nonlinearity. This simplicity allows us to choose it from a wide range of possibilities, thus facilitating the application of the model to numerous singular reaction-diffusion phenomena. To bolster our findings, we will present various real-world applications in the fields of bioengineering and life sciences, showcasing the practical relevance of quenching phenomena. Finally, the paper ends with a conclusion and some potential future perspectives for further research in this area.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信