Jiacheng Fu, Dengbin Liao, Chunzhi Meng, Anni Huang, Junbing Pan
{"title":"异构云环境中的协作与集成资源调度算法研究","authors":"Jiacheng Fu, Dengbin Liao, Chunzhi Meng, Anni Huang, Junbing Pan","doi":"10.1117/12.3014391","DOIUrl":null,"url":null,"abstract":"The current conventional collaborative resource scheduling algorithms in heterogeneous cloud environments mainly process the allocation through the quantified results of data characteristics of heterogeneous cloud resources, which leads to low integrated scheduling efficiency due to the differences in the attributes of resources. In this regard, a collaborative and comprehensive resource scheduling algorithm in heterogeneous cloud environment is proposed. Firstly, the heterogeneous cloud resource information data is sampled and processed, and the resource quality is graded. The scheduling task model is constructed by constructing the mapping function of scheduling task assignment sub-nodes, and the hierarchical scheduling strategy is proposed by combining with ant colony algorithm. In the experiments, the designed collaborative integrated scheduling algorithm is tested for the scheduling efficiency. The final results can prove that the algorithm has a lower average delay and a more desirable integrated scheduling efficiency when the proposed method is used for scheduling heterogeneous cloud resources.","PeriodicalId":516634,"journal":{"name":"International Conference on Algorithm, Imaging Processing and Machine Vision (AIPMV 2023)","volume":"143 3","pages":"129690J - 129690J-6"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on collaborative and integrated resource schedulingalgorithm in heterogeneous cloud environment\",\"authors\":\"Jiacheng Fu, Dengbin Liao, Chunzhi Meng, Anni Huang, Junbing Pan\",\"doi\":\"10.1117/12.3014391\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The current conventional collaborative resource scheduling algorithms in heterogeneous cloud environments mainly process the allocation through the quantified results of data characteristics of heterogeneous cloud resources, which leads to low integrated scheduling efficiency due to the differences in the attributes of resources. In this regard, a collaborative and comprehensive resource scheduling algorithm in heterogeneous cloud environment is proposed. Firstly, the heterogeneous cloud resource information data is sampled and processed, and the resource quality is graded. The scheduling task model is constructed by constructing the mapping function of scheduling task assignment sub-nodes, and the hierarchical scheduling strategy is proposed by combining with ant colony algorithm. In the experiments, the designed collaborative integrated scheduling algorithm is tested for the scheduling efficiency. The final results can prove that the algorithm has a lower average delay and a more desirable integrated scheduling efficiency when the proposed method is used for scheduling heterogeneous cloud resources.\",\"PeriodicalId\":516634,\"journal\":{\"name\":\"International Conference on Algorithm, Imaging Processing and Machine Vision (AIPMV 2023)\",\"volume\":\"143 3\",\"pages\":\"129690J - 129690J-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Algorithm, Imaging Processing and Machine Vision (AIPMV 2023)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.3014391\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Algorithm, Imaging Processing and Machine Vision (AIPMV 2023)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.3014391","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Research on collaborative and integrated resource schedulingalgorithm in heterogeneous cloud environment
The current conventional collaborative resource scheduling algorithms in heterogeneous cloud environments mainly process the allocation through the quantified results of data characteristics of heterogeneous cloud resources, which leads to low integrated scheduling efficiency due to the differences in the attributes of resources. In this regard, a collaborative and comprehensive resource scheduling algorithm in heterogeneous cloud environment is proposed. Firstly, the heterogeneous cloud resource information data is sampled and processed, and the resource quality is graded. The scheduling task model is constructed by constructing the mapping function of scheduling task assignment sub-nodes, and the hierarchical scheduling strategy is proposed by combining with ant colony algorithm. In the experiments, the designed collaborative integrated scheduling algorithm is tested for the scheduling efficiency. The final results can prove that the algorithm has a lower average delay and a more desirable integrated scheduling efficiency when the proposed method is used for scheduling heterogeneous cloud resources.