利用多斯扩散技术控制硅太阳能电池的磷发射极轮廓

R. Chaoui, B. Mahmoudi, A. Messaoud, Y. S. Ahmed, Amine Mefoued
{"title":"利用多斯扩散技术控制硅太阳能电池的磷发射极轮廓","authors":"R. Chaoui, B. Mahmoudi, A. Messaoud, Y. S. Ahmed, Amine Mefoued","doi":"10.54966/jreen.v19i2.569","DOIUrl":null,"url":null,"abstract":"The Doped Oxide Solid Source (DOSS) diffusion technique is well suited for fine-tuning of the surface concentration. The dopant surface concentration is important during phosphorus emitter diffusion due to the opposite requirements of a lowly doped emitter for good blue response and a sufficiently high surface concentration for a good ohmic contact. The sources are made in the laboratory using the standard POCl3 diffusion technique. DOSS Diffusions were carried out in the temperature range 850-1050°C using sources with different doping levels obtained by varying the POCl3 partial pressure from 0.004 % to 4.28 %. The electrical profiles were measured using the Stripping Hall profiling technique. Phosphorus diffusion profiles with the complete elimination of the dead layer have been obtained over a large range of source concentrations for all investigated diffusion temperatures. The residual diffusion oxide thickness increased with both temperature and source doping level within the range 7.5-30 nm. XPS profiling indicated that the composition of the residual glass was a mixture of P2O5 and SiO2.","PeriodicalId":314878,"journal":{"name":"Journal of Renewable Energies","volume":"214 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Phosphorus emitter profile control for silicon solar cell using the doss diffusion technique\",\"authors\":\"R. Chaoui, B. Mahmoudi, A. Messaoud, Y. S. Ahmed, Amine Mefoued\",\"doi\":\"10.54966/jreen.v19i2.569\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Doped Oxide Solid Source (DOSS) diffusion technique is well suited for fine-tuning of the surface concentration. The dopant surface concentration is important during phosphorus emitter diffusion due to the opposite requirements of a lowly doped emitter for good blue response and a sufficiently high surface concentration for a good ohmic contact. The sources are made in the laboratory using the standard POCl3 diffusion technique. DOSS Diffusions were carried out in the temperature range 850-1050°C using sources with different doping levels obtained by varying the POCl3 partial pressure from 0.004 % to 4.28 %. The electrical profiles were measured using the Stripping Hall profiling technique. Phosphorus diffusion profiles with the complete elimination of the dead layer have been obtained over a large range of source concentrations for all investigated diffusion temperatures. The residual diffusion oxide thickness increased with both temperature and source doping level within the range 7.5-30 nm. XPS profiling indicated that the composition of the residual glass was a mixture of P2O5 and SiO2.\",\"PeriodicalId\":314878,\"journal\":{\"name\":\"Journal of Renewable Energies\",\"volume\":\"214 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Renewable Energies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54966/jreen.v19i2.569\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Renewable Energies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54966/jreen.v19i2.569","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

掺杂氧化物固体源 (DOSS) 扩散技术非常适合微调表面浓度。在磷发射极扩散过程中,掺杂剂表面浓度非常重要,因为低掺杂发射极需要良好的蓝光响应,而足够高的表面浓度则需要良好的欧姆接触。光源是在实验室使用标准 POCl3 扩散技术制造的。在 850-1050°C 的温度范围内,使用不同掺杂水平的光源进行了 DOSS 扩散,POCl3 分压从 0.004 % 到 4.28 % 不等。使用剥离霍尔剖面技术测量了电学剖面。在所有研究的扩散温度下,磷扩散曲线在很大的源浓度范围内完全消除了死层。在 7.5-30 纳米范围内,残余扩散氧化层厚度随温度和源掺杂水平的增加而增加。XPS 分析表明,残留玻璃的成分是 P2O5 和 SiO2 的混合物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Phosphorus emitter profile control for silicon solar cell using the doss diffusion technique
The Doped Oxide Solid Source (DOSS) diffusion technique is well suited for fine-tuning of the surface concentration. The dopant surface concentration is important during phosphorus emitter diffusion due to the opposite requirements of a lowly doped emitter for good blue response and a sufficiently high surface concentration for a good ohmic contact. The sources are made in the laboratory using the standard POCl3 diffusion technique. DOSS Diffusions were carried out in the temperature range 850-1050°C using sources with different doping levels obtained by varying the POCl3 partial pressure from 0.004 % to 4.28 %. The electrical profiles were measured using the Stripping Hall profiling technique. Phosphorus diffusion profiles with the complete elimination of the dead layer have been obtained over a large range of source concentrations for all investigated diffusion temperatures. The residual diffusion oxide thickness increased with both temperature and source doping level within the range 7.5-30 nm. XPS profiling indicated that the composition of the residual glass was a mixture of P2O5 and SiO2.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信