{"title":"PLATO 飞行任务对系外行星探测的地基光度跟踪","authors":"H. Deeg, R. A. I. D. A. D. Canarias, U. L. Laguna","doi":"10.31577/caosp.2024.54.2.142","DOIUrl":null,"url":null,"abstract":"Detections of transiting planets from the upcoming PLATO mission are expected to face significant contamination from contaminating eclipsing binaries, resulting in false positives. To counter this, a ground-based programme to acquire time-critical photometry is pursued. Its principal aim is to obtain time-series observations of the planet candidate and its surrounding stars at the times of expected transits. This programme is part of the PLATO Ground-based Observations Programme, which also covers spectroscopic and imaging observations. The current photometric follow-up programme is assembling the required observational resources, executing benchmark observations, and defining strategies for the observations and their reporting. Post-launch, it will focus on coordinating photometric data collection and analysis, and will update candidate statuses in the PLATO follow-up database. Its work packages are outlined, covering specific tools, citizen contributions, standard and multi-colour observations, secondary eclipses, and reprocessing of archival photometry. Ground-based follow-up photometry will likely concentrate on longer-period candidates, given that false positives of short-period candidates will likely become identifiable in timeseries available from GAIA in the near future. Geographical considerations for follow-up observations from the first PLATO long-observation field LOPS2 are outlined, which lies in the southern hemisphere, with later fields expected to be more suitable for northern observers.","PeriodicalId":515045,"journal":{"name":"Contributions of the Astronomical Observatory Skalnaté Pleso","volume":"62 8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ground-based photometric follow-up for exoplanet detections with the PLATO mission\",\"authors\":\"H. Deeg, R. A. I. D. A. D. Canarias, U. L. Laguna\",\"doi\":\"10.31577/caosp.2024.54.2.142\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Detections of transiting planets from the upcoming PLATO mission are expected to face significant contamination from contaminating eclipsing binaries, resulting in false positives. To counter this, a ground-based programme to acquire time-critical photometry is pursued. Its principal aim is to obtain time-series observations of the planet candidate and its surrounding stars at the times of expected transits. This programme is part of the PLATO Ground-based Observations Programme, which also covers spectroscopic and imaging observations. The current photometric follow-up programme is assembling the required observational resources, executing benchmark observations, and defining strategies for the observations and their reporting. Post-launch, it will focus on coordinating photometric data collection and analysis, and will update candidate statuses in the PLATO follow-up database. Its work packages are outlined, covering specific tools, citizen contributions, standard and multi-colour observations, secondary eclipses, and reprocessing of archival photometry. Ground-based follow-up photometry will likely concentrate on longer-period candidates, given that false positives of short-period candidates will likely become identifiable in timeseries available from GAIA in the near future. Geographical considerations for follow-up observations from the first PLATO long-observation field LOPS2 are outlined, which lies in the southern hemisphere, with later fields expected to be more suitable for northern observers.\",\"PeriodicalId\":515045,\"journal\":{\"name\":\"Contributions of the Astronomical Observatory Skalnaté Pleso\",\"volume\":\"62 8\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Contributions of the Astronomical Observatory Skalnaté Pleso\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31577/caosp.2024.54.2.142\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Contributions of the Astronomical Observatory Skalnaté Pleso","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31577/caosp.2024.54.2.142","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Ground-based photometric follow-up for exoplanet detections with the PLATO mission
Detections of transiting planets from the upcoming PLATO mission are expected to face significant contamination from contaminating eclipsing binaries, resulting in false positives. To counter this, a ground-based programme to acquire time-critical photometry is pursued. Its principal aim is to obtain time-series observations of the planet candidate and its surrounding stars at the times of expected transits. This programme is part of the PLATO Ground-based Observations Programme, which also covers spectroscopic and imaging observations. The current photometric follow-up programme is assembling the required observational resources, executing benchmark observations, and defining strategies for the observations and their reporting. Post-launch, it will focus on coordinating photometric data collection and analysis, and will update candidate statuses in the PLATO follow-up database. Its work packages are outlined, covering specific tools, citizen contributions, standard and multi-colour observations, secondary eclipses, and reprocessing of archival photometry. Ground-based follow-up photometry will likely concentrate on longer-period candidates, given that false positives of short-period candidates will likely become identifiable in timeseries available from GAIA in the near future. Geographical considerations for follow-up observations from the first PLATO long-observation field LOPS2 are outlined, which lies in the southern hemisphere, with later fields expected to be more suitable for northern observers.