基于 BP 神经网络的河南省粮食产量预测模型

Jun Xu, Yaru Yuan
{"title":"基于 BP 神经网络的河南省粮食产量预测模型","authors":"Jun Xu, Yaru Yuan","doi":"10.1117/12.3014503","DOIUrl":null,"url":null,"abstract":"Henan Province is an important agricultural province in China, and its food production is crucial for meeting the country's food needs and ensuring food security. This article establishes a prediction model for grain yield in Henan Province based on BP neural network. Six indicators are selected as input variables, including total power of agricultural machinery, effective irrigation area, converted amount of agricultural fertilizer application, pesticide usage, sowing area of grain crops, and rural electricity consumption. Grain yield is used as output variable. The experimental results show that the error rate of the BP neural network prediction model in the training and validation stages is controlled within 3%, indicating that the model has good prediction performance and is helpful for the government to formulate agricultural planning and agricultural production management strategies.","PeriodicalId":516634,"journal":{"name":"International Conference on Algorithm, Imaging Processing and Machine Vision (AIPMV 2023)","volume":"59 10","pages":"129692R - 129692R-5"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A prediction model for grain yield in Henan province based on BP neural network\",\"authors\":\"Jun Xu, Yaru Yuan\",\"doi\":\"10.1117/12.3014503\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Henan Province is an important agricultural province in China, and its food production is crucial for meeting the country's food needs and ensuring food security. This article establishes a prediction model for grain yield in Henan Province based on BP neural network. Six indicators are selected as input variables, including total power of agricultural machinery, effective irrigation area, converted amount of agricultural fertilizer application, pesticide usage, sowing area of grain crops, and rural electricity consumption. Grain yield is used as output variable. The experimental results show that the error rate of the BP neural network prediction model in the training and validation stages is controlled within 3%, indicating that the model has good prediction performance and is helpful for the government to formulate agricultural planning and agricultural production management strategies.\",\"PeriodicalId\":516634,\"journal\":{\"name\":\"International Conference on Algorithm, Imaging Processing and Machine Vision (AIPMV 2023)\",\"volume\":\"59 10\",\"pages\":\"129692R - 129692R-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Algorithm, Imaging Processing and Machine Vision (AIPMV 2023)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.3014503\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Algorithm, Imaging Processing and Machine Vision (AIPMV 2023)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.3014503","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

河南省是中国重要的农业大省,其粮食生产对满足国家粮食需求和确保粮食安全至关重要。本文建立了基于 BP 神经网络的河南省粮食产量预测模型。输入变量包括农业机械总动力、有效灌溉面积、农用化肥折算施用量、农药使用量、粮食作物播种面积和农村用电量。粮食产量作为输出变量。实验结果表明,BP 神经网络预测模型在训练和验证阶段的误差率均控制在 3%以内,表明该模型具有良好的预测性能,有助于政府制定农业规划和农业生产管理策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A prediction model for grain yield in Henan province based on BP neural network
Henan Province is an important agricultural province in China, and its food production is crucial for meeting the country's food needs and ensuring food security. This article establishes a prediction model for grain yield in Henan Province based on BP neural network. Six indicators are selected as input variables, including total power of agricultural machinery, effective irrigation area, converted amount of agricultural fertilizer application, pesticide usage, sowing area of grain crops, and rural electricity consumption. Grain yield is used as output variable. The experimental results show that the error rate of the BP neural network prediction model in the training and validation stages is controlled within 3%, indicating that the model has good prediction performance and is helpful for the government to formulate agricultural planning and agricultural production management strategies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信