{"title":"基于改进型 CNN 和 DoG 算子的混凝土裂缝识别和检测方法","authors":"Haohua Luo, Yulun Wu, Yaoyang Liang, Jinshuai Ren, Zhiming Wang, Yilu Huang","doi":"10.1117/12.3014461","DOIUrl":null,"url":null,"abstract":"Concrete will produce cracks under the long-term action of loads and affect the building safety, due to the unsatisfactory accuracy and efficiency of manual detection of concrete cracks, a concrete crack recognition and detection method based on improved CNN and DoG operator is proposed. Firstly, the recognition ability is trained by CNN to locate the valuable images from the image dataset, and then the locating crack images are greyscaled, denoised using bilateral filtering method, considering that the filtering will make the image edges blurred, the DoG operator is used to detect the completeness of the edges, and then the image is binary transformed by selecting thresholds through the one-dimensional Otus segmentation method, and the binary map is opened by the open operation, to fill in the broken parts within the cracks and protect the crack edges, and finally the length, width, and rotation angle of the crack are calculated by mapping the complete straight lines present in the crack through Hough space. The experimental results show that the method can accurately identify and detect crack features of different shapes with superior detection accuracy.","PeriodicalId":516634,"journal":{"name":"International Conference on Algorithm, Imaging Processing and Machine Vision (AIPMV 2023)","volume":"44 5","pages":"1296925 - 1296925-5"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Concrete crack identification and detection method based on improved CNN and DoG operator\",\"authors\":\"Haohua Luo, Yulun Wu, Yaoyang Liang, Jinshuai Ren, Zhiming Wang, Yilu Huang\",\"doi\":\"10.1117/12.3014461\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Concrete will produce cracks under the long-term action of loads and affect the building safety, due to the unsatisfactory accuracy and efficiency of manual detection of concrete cracks, a concrete crack recognition and detection method based on improved CNN and DoG operator is proposed. Firstly, the recognition ability is trained by CNN to locate the valuable images from the image dataset, and then the locating crack images are greyscaled, denoised using bilateral filtering method, considering that the filtering will make the image edges blurred, the DoG operator is used to detect the completeness of the edges, and then the image is binary transformed by selecting thresholds through the one-dimensional Otus segmentation method, and the binary map is opened by the open operation, to fill in the broken parts within the cracks and protect the crack edges, and finally the length, width, and rotation angle of the crack are calculated by mapping the complete straight lines present in the crack through Hough space. The experimental results show that the method can accurately identify and detect crack features of different shapes with superior detection accuracy.\",\"PeriodicalId\":516634,\"journal\":{\"name\":\"International Conference on Algorithm, Imaging Processing and Machine Vision (AIPMV 2023)\",\"volume\":\"44 5\",\"pages\":\"1296925 - 1296925-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Algorithm, Imaging Processing and Machine Vision (AIPMV 2023)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.3014461\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Algorithm, Imaging Processing and Machine Vision (AIPMV 2023)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.3014461","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
混凝土在荷载的长期作用下会产生裂缝,影响建筑物的安全,由于人工检测混凝土裂缝的精度和效率不理想,因此提出了一种基于改进型 CNN 和 DoG 算子的混凝土裂缝识别检测方法。首先,通过 CNN 训练识别能力,从图像数据集中定位出有价值的图像,然后对定位出的裂缝图像进行灰度化处理,使用双边滤波方法去噪,考虑到滤波会使图像边缘模糊,使用 DoG 算子检测边缘的完整性、然后通过一维 Otus 分割方法选择阈值对图像进行二值化转换,并通过打开操作打开二值图,以填充裂缝内的破碎部分并保护裂缝边缘,最后通过 Hough 空间映射裂缝中存在的完整直线,计算出裂缝的长度、宽度和旋转角度。实验结果表明,该方法能准确识别和检测不同形状的裂纹特征,检测精度高。
Concrete crack identification and detection method based on improved CNN and DoG operator
Concrete will produce cracks under the long-term action of loads and affect the building safety, due to the unsatisfactory accuracy and efficiency of manual detection of concrete cracks, a concrete crack recognition and detection method based on improved CNN and DoG operator is proposed. Firstly, the recognition ability is trained by CNN to locate the valuable images from the image dataset, and then the locating crack images are greyscaled, denoised using bilateral filtering method, considering that the filtering will make the image edges blurred, the DoG operator is used to detect the completeness of the edges, and then the image is binary transformed by selecting thresholds through the one-dimensional Otus segmentation method, and the binary map is opened by the open operation, to fill in the broken parts within the cracks and protect the crack edges, and finally the length, width, and rotation angle of the crack are calculated by mapping the complete straight lines present in the crack through Hough space. The experimental results show that the method can accurately identify and detect crack features of different shapes with superior detection accuracy.