Chenxuan Song, Jinming Liu, Chunqi Wang, Zhijiang Li
{"title":"利用近红外光谱和机器视觉数据的融合快速识别掺假大米:特征优化与非线性建模的结合","authors":"Chenxuan Song, Jinming Liu, Chunqi Wang, Zhijiang Li","doi":"10.1117/12.3014380","DOIUrl":null,"url":null,"abstract":"Rice is susceptible to mold and mildew during storage. Metabolites such as aflatoxin produced during mildew will do great harm to consumers. To meet the need for rapid detection of normal rice adulterated with moldy rice, a rapid identification method of adulterated rice was established based on data fusion of near-infrared spectroscopy and machine vision. Using competitive adaptive reweighted sampling (CARS), genetic algorithm (GA), and least angle regression (LARS) for spectral and image feature extraction, combined with support vector classification (SVC), random forest (RF), and gradient boosting tree (GBT) nonlinear discriminant models, and use Bayesian search to optimize modeling parameters. The results show that the GBT fusion data model established by LARS optimization of spectral and image feature variables has the highest discrimination accuracy, with recognition accuracy rates of 100.00% and 98.11% for its training and testing sets, respectively. The discrimination performance is significantly improved compared to single near-infrared spectroscopy and machine vision. The results indicate that rapid identification of adulterated rice based on near-infrared spectroscopy and machine vision data fusion technology is feasible, providing theoretical support for the development of online identification equipment for adulterated rice.","PeriodicalId":516634,"journal":{"name":"International Conference on Algorithm, Imaging Processing and Machine Vision (AIPMV 2023)","volume":"63 2","pages":"129692J - 129692J-16"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rapid identification of adulterated rice using fusion of near-infrared spectroscopy and machine vision data: the combination of feature optimization and nonlinear modeling\",\"authors\":\"Chenxuan Song, Jinming Liu, Chunqi Wang, Zhijiang Li\",\"doi\":\"10.1117/12.3014380\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rice is susceptible to mold and mildew during storage. Metabolites such as aflatoxin produced during mildew will do great harm to consumers. To meet the need for rapid detection of normal rice adulterated with moldy rice, a rapid identification method of adulterated rice was established based on data fusion of near-infrared spectroscopy and machine vision. Using competitive adaptive reweighted sampling (CARS), genetic algorithm (GA), and least angle regression (LARS) for spectral and image feature extraction, combined with support vector classification (SVC), random forest (RF), and gradient boosting tree (GBT) nonlinear discriminant models, and use Bayesian search to optimize modeling parameters. The results show that the GBT fusion data model established by LARS optimization of spectral and image feature variables has the highest discrimination accuracy, with recognition accuracy rates of 100.00% and 98.11% for its training and testing sets, respectively. The discrimination performance is significantly improved compared to single near-infrared spectroscopy and machine vision. The results indicate that rapid identification of adulterated rice based on near-infrared spectroscopy and machine vision data fusion technology is feasible, providing theoretical support for the development of online identification equipment for adulterated rice.\",\"PeriodicalId\":516634,\"journal\":{\"name\":\"International Conference on Algorithm, Imaging Processing and Machine Vision (AIPMV 2023)\",\"volume\":\"63 2\",\"pages\":\"129692J - 129692J-16\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Algorithm, Imaging Processing and Machine Vision (AIPMV 2023)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.3014380\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Algorithm, Imaging Processing and Machine Vision (AIPMV 2023)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.3014380","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
大米在储存过程中容易发霉。霉变过程中产生的黄曲霉毒素等代谢物会对消费者造成极大伤害。为了满足快速检测正常大米与霉变大米掺假的需要,建立了一种基于近红外光谱和机器视觉数据融合的快速识别掺假大米的方法。利用竞争性自适应加权采样(CARS)、遗传算法(GA)和最小角度回归(LARS)进行光谱和图像特征提取,结合支持向量分类(SVC)、随机森林(RF)和梯度提升树(GBT)非线性判别模型,并利用贝叶斯搜索优化建模参数。结果表明,通过对光谱和图像特征变量进行 LARS 优化而建立的 GBT 融合数据模型的判别准确率最高,其训练集和测试集的识别准确率分别为 100.00% 和 98.11%。与单一的近红外光谱仪和机器视觉相比,其识别性能明显提高。结果表明,基于近红外光谱和机器视觉数据融合技术快速识别掺假大米是可行的,为掺假大米在线识别设备的开发提供了理论支持。
Rapid identification of adulterated rice using fusion of near-infrared spectroscopy and machine vision data: the combination of feature optimization and nonlinear modeling
Rice is susceptible to mold and mildew during storage. Metabolites such as aflatoxin produced during mildew will do great harm to consumers. To meet the need for rapid detection of normal rice adulterated with moldy rice, a rapid identification method of adulterated rice was established based on data fusion of near-infrared spectroscopy and machine vision. Using competitive adaptive reweighted sampling (CARS), genetic algorithm (GA), and least angle regression (LARS) for spectral and image feature extraction, combined with support vector classification (SVC), random forest (RF), and gradient boosting tree (GBT) nonlinear discriminant models, and use Bayesian search to optimize modeling parameters. The results show that the GBT fusion data model established by LARS optimization of spectral and image feature variables has the highest discrimination accuracy, with recognition accuracy rates of 100.00% and 98.11% for its training and testing sets, respectively. The discrimination performance is significantly improved compared to single near-infrared spectroscopy and machine vision. The results indicate that rapid identification of adulterated rice based on near-infrared spectroscopy and machine vision data fusion technology is feasible, providing theoretical support for the development of online identification equipment for adulterated rice.