通过外部时间尺度裁剪降低水库计算机超参数依赖性

L. Jaurigue, Kathy Lüdge
{"title":"通过外部时间尺度裁剪降低水库计算机超参数依赖性","authors":"L. Jaurigue, Kathy Lüdge","doi":"10.1088/2634-4386/ad1d32","DOIUrl":null,"url":null,"abstract":"\n Task specific hyperparameter tuning in reservoir computing is an open issue, and is of particular relevance for hardware implemented reservoirs. We investigate the influence of directly including externally controllable task specific timescales on the performance and hyperparameter sensitivity of reservoir computing approaches. We show that the need for hyperparameter optimisation can be reduced if timescales of the reservoir are tailored to the specific task. Our results are mainly relevant for temporal tasks requiring memory of past inputs, for example chaotic timeseries prediciton. We consider various methods of including task specific timescales in the reservoir computing approach and demonstrate the universality of our message by looking at both time-multiplexed and spatially multiplexed reservoir computing.","PeriodicalId":114772,"journal":{"name":"Neuromorph. Comput. Eng.","volume":"15 1","pages":"14001"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Reducing reservoir computer hyperparameter dependence by external timescale tailoring\",\"authors\":\"L. Jaurigue, Kathy Lüdge\",\"doi\":\"10.1088/2634-4386/ad1d32\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Task specific hyperparameter tuning in reservoir computing is an open issue, and is of particular relevance for hardware implemented reservoirs. We investigate the influence of directly including externally controllable task specific timescales on the performance and hyperparameter sensitivity of reservoir computing approaches. We show that the need for hyperparameter optimisation can be reduced if timescales of the reservoir are tailored to the specific task. Our results are mainly relevant for temporal tasks requiring memory of past inputs, for example chaotic timeseries prediciton. We consider various methods of including task specific timescales in the reservoir computing approach and demonstrate the universality of our message by looking at both time-multiplexed and spatially multiplexed reservoir computing.\",\"PeriodicalId\":114772,\"journal\":{\"name\":\"Neuromorph. Comput. Eng.\",\"volume\":\"15 1\",\"pages\":\"14001\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuromorph. Comput. Eng.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2634-4386/ad1d32\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuromorph. Comput. Eng.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2634-4386/ad1d32","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

蓄水池计算中的特定任务超参数调整是一个尚未解决的问题,对于硬件实现的蓄水池尤为重要。我们研究了直接包含外部可控任务特定时间尺度对水库计算方法的性能和超参数敏感性的影响。我们的研究表明,如果蓄水池的时间尺度是根据特定任务定制的,就可以减少对超参数优化的需求。我们的结果主要适用于需要记忆过去输入的时间任务,例如混沌时序预测。我们考虑了将任务特定时标纳入蓄水池计算方法的各种方法,并通过研究时间多路复用和空间多路复用蓄水池计算来证明我们的信息具有普遍性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reducing reservoir computer hyperparameter dependence by external timescale tailoring
Task specific hyperparameter tuning in reservoir computing is an open issue, and is of particular relevance for hardware implemented reservoirs. We investigate the influence of directly including externally controllable task specific timescales on the performance and hyperparameter sensitivity of reservoir computing approaches. We show that the need for hyperparameter optimisation can be reduced if timescales of the reservoir are tailored to the specific task. Our results are mainly relevant for temporal tasks requiring memory of past inputs, for example chaotic timeseries prediciton. We consider various methods of including task specific timescales in the reservoir computing approach and demonstrate the universality of our message by looking at both time-multiplexed and spatially multiplexed reservoir computing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信