利用两级注意力机制进行深度人脸识别与连体单次学习

Arkan Mahmood Albayati, Wael Chtourou, F. Zarai
{"title":"利用两级注意力机制进行深度人脸识别与连体单次学习","authors":"Arkan Mahmood Albayati, Wael Chtourou, F. Zarai","doi":"10.18196/jrc.v5i1.20135","DOIUrl":null,"url":null,"abstract":"Discriminative feature embedding is used for largescale facial recognition. Many image-based facial recognition networks use CNNs like ResNets and VGG-nets. Humans prioritise different elements, but CNNs treat all facial pictures equally. NLP and computer vision use attention to learn the most important part of an input signal. The inter-channel and inter-spatial attention mechanism is used to assess face image component significance in this study. Channel scalars are calculated using Global Average Pooling in face recognition channel attention. A recent study found that GAP encodes low-frequency channel information first. We compressed channels using discrete cosine transform (DCT) instead of scalar representation to evaluate information at frequencies other than the lowest frequency for the channel attention mechanism. Later layers can acquire the feature map after spatial attention. Channel and spatial attention increase CNN facial recognition feature extraction. Channel-only, spatial-only, parallel, sequential, or channel-after-spatial attention blocks exist. Current face recognition attention approaches may be outperformed on public datasets (Labelled Faces in the Wild).","PeriodicalId":443428,"journal":{"name":"Journal of Robotics and Control (JRC)","volume":"15 7","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Leveraging a Two-Level Attention Mechanism for Deep Face Recognition with Siamese One-Shot Learning\",\"authors\":\"Arkan Mahmood Albayati, Wael Chtourou, F. Zarai\",\"doi\":\"10.18196/jrc.v5i1.20135\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Discriminative feature embedding is used for largescale facial recognition. Many image-based facial recognition networks use CNNs like ResNets and VGG-nets. Humans prioritise different elements, but CNNs treat all facial pictures equally. NLP and computer vision use attention to learn the most important part of an input signal. The inter-channel and inter-spatial attention mechanism is used to assess face image component significance in this study. Channel scalars are calculated using Global Average Pooling in face recognition channel attention. A recent study found that GAP encodes low-frequency channel information first. We compressed channels using discrete cosine transform (DCT) instead of scalar representation to evaluate information at frequencies other than the lowest frequency for the channel attention mechanism. Later layers can acquire the feature map after spatial attention. Channel and spatial attention increase CNN facial recognition feature extraction. Channel-only, spatial-only, parallel, sequential, or channel-after-spatial attention blocks exist. Current face recognition attention approaches may be outperformed on public datasets (Labelled Faces in the Wild).\",\"PeriodicalId\":443428,\"journal\":{\"name\":\"Journal of Robotics and Control (JRC)\",\"volume\":\"15 7\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Robotics and Control (JRC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18196/jrc.v5i1.20135\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Robotics and Control (JRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18196/jrc.v5i1.20135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

判别特征嵌入可用于大规模面部识别。许多基于图像的人脸识别网络都使用 CNN,如 ResNets 和 VGG-nets。人类会优先考虑不同的元素,但 CNN 对所有面部图片一视同仁。NLP 和计算机视觉利用注意力来学习输入信号中最重要的部分。本研究采用跨通道和跨空间注意力机制来评估面部图像成分的重要性。在人脸识别通道注意力中,使用全局平均池化(Global Average Pooling)来计算通道标量。最近的一项研究发现,GAP 首先对低频信道信息进行编码。我们使用离散余弦变换(DCT)而不是标量表示来压缩信道,以评估信道注意机制的最低频率以外的频率信息。之后的层可以在空间注意力之后获取特征图。通道和空间注意增加了 CNN 面部识别特征提取。目前存在纯通道、纯空间、并行、顺序或通道后空间注意力块。目前的人脸识别注意力方法在公共数据集(野生标签人脸)上的表现可能会更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Leveraging a Two-Level Attention Mechanism for Deep Face Recognition with Siamese One-Shot Learning
Discriminative feature embedding is used for largescale facial recognition. Many image-based facial recognition networks use CNNs like ResNets and VGG-nets. Humans prioritise different elements, but CNNs treat all facial pictures equally. NLP and computer vision use attention to learn the most important part of an input signal. The inter-channel and inter-spatial attention mechanism is used to assess face image component significance in this study. Channel scalars are calculated using Global Average Pooling in face recognition channel attention. A recent study found that GAP encodes low-frequency channel information first. We compressed channels using discrete cosine transform (DCT) instead of scalar representation to evaluate information at frequencies other than the lowest frequency for the channel attention mechanism. Later layers can acquire the feature map after spatial attention. Channel and spatial attention increase CNN facial recognition feature extraction. Channel-only, spatial-only, parallel, sequential, or channel-after-spatial attention blocks exist. Current face recognition attention approaches may be outperformed on public datasets (Labelled Faces in the Wild).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信