在 GSTAR-SUR 模型中增加神经网络方法以克服降雨数据预报中的非线性情况

Atiek Iriany, adjie achmad rienaldo fernandes, Achmad Efendi, Henida Ratna Ayu Putri, D. Ariyanto, Wigbertus Ngabu
{"title":"在 GSTAR-SUR 模型中增加神经网络方法以克服降雨数据预报中的非线性情况","authors":"Atiek Iriany, adjie achmad rienaldo fernandes, Achmad Efendi, Henida Ratna Ayu Putri, D. Ariyanto, Wigbertus Ngabu","doi":"10.26740/mathunesa.v12n1.p226-236","DOIUrl":null,"url":null,"abstract":"Salah satu model peramalan yang dapat yang menggabungkan unsur spasial (spatial) dan temporal (time) adalah Generalized Space Time Autoregressive (GSTAR). Pendugaan parameter yang digunakan adalah Seemingly Unrelated Regression (SUR). Peramalan iklim pada tanaman hortikultura pada masa kini sulit untuk diprediksi karena memiliki pola dan karakteristik yang sulit diidentifikasi dan dapat disebut aktivitas non linier. Unsur non linier ini dapat ditangkap oleh metode neural network. Penelitian ini ingin mengetahui hasil peramalan curah hujan pada 6 wilayah di Tengger menggunakan model GSTAR dengan pendugaan parameter menggunakan metode SUR dan digabungkan dengan neural network agar hasil peramalan yang lebih akurat. Data yang digunakan dalam penelitian ini adalah data curah hujan enam lokasi di wilayah Tengger, yakni Ngadirejo, Puspo, Wonokitri, Argosari, Ngadas, dan Wonokerto. Model yang tepat dalam melakukan peramalan pada data curah hujan pada 6 lokasi Tengger adalah model GSTAR (1,2,3,4,5,6,7,36(1)) Backpropagation Neural Network (96-120-6).","PeriodicalId":516694,"journal":{"name":"MATHunesa: Jurnal Ilmiah Matematika","volume":"29 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PENAMBAHAN METODE NEURAL NETWORK DALAM PEMODELAN GSTAR-SUR UNTUK MENGATASI KASUS NON LINIER PADA PERAMALAN DATA CURAH HUJAN\",\"authors\":\"Atiek Iriany, adjie achmad rienaldo fernandes, Achmad Efendi, Henida Ratna Ayu Putri, D. Ariyanto, Wigbertus Ngabu\",\"doi\":\"10.26740/mathunesa.v12n1.p226-236\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Salah satu model peramalan yang dapat yang menggabungkan unsur spasial (spatial) dan temporal (time) adalah Generalized Space Time Autoregressive (GSTAR). Pendugaan parameter yang digunakan adalah Seemingly Unrelated Regression (SUR). Peramalan iklim pada tanaman hortikultura pada masa kini sulit untuk diprediksi karena memiliki pola dan karakteristik yang sulit diidentifikasi dan dapat disebut aktivitas non linier. Unsur non linier ini dapat ditangkap oleh metode neural network. Penelitian ini ingin mengetahui hasil peramalan curah hujan pada 6 wilayah di Tengger menggunakan model GSTAR dengan pendugaan parameter menggunakan metode SUR dan digabungkan dengan neural network agar hasil peramalan yang lebih akurat. Data yang digunakan dalam penelitian ini adalah data curah hujan enam lokasi di wilayah Tengger, yakni Ngadirejo, Puspo, Wonokitri, Argosari, Ngadas, dan Wonokerto. Model yang tepat dalam melakukan peramalan pada data curah hujan pada 6 lokasi Tengger adalah model GSTAR (1,2,3,4,5,6,7,36(1)) Backpropagation Neural Network (96-120-6).\",\"PeriodicalId\":516694,\"journal\":{\"name\":\"MATHunesa: Jurnal Ilmiah Matematika\",\"volume\":\"29 5\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MATHunesa: Jurnal Ilmiah Matematika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26740/mathunesa.v12n1.p226-236\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MATHunesa: Jurnal Ilmiah Matematika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26740/mathunesa.v12n1.p226-236","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

广义时空自回归(GSTAR)是一种结合了空间和时间要素的预测模型。使用的参数估计方法是看似不相关回归(SUR)。如今,园艺作物的气候预测很难预测,因为它具有难以识别的模式和特征,可称为非线性活动。这种非线性因素可以通过神经网络方法来捕捉。本研究希望了解使用 GSTAR 模型预测腾格里 6 个地区降雨量的结果,该模型使用 SUR 方法进行参数估计,并与神经网络相结合,以获得更准确的预测结果。本研究使用的数据是腾格里地区六个地点的降雨量数据,即 Ngadirejo、Puspo、Wonokitri、Argosari、Ngadas 和 Wonokerto。预报腾格里 6 个地点降雨量数据的正确模型是 GSTAR(1,2,3,4,5,6,7,36(1))反向传播神经网络(96-120-6)模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PENAMBAHAN METODE NEURAL NETWORK DALAM PEMODELAN GSTAR-SUR UNTUK MENGATASI KASUS NON LINIER PADA PERAMALAN DATA CURAH HUJAN
Salah satu model peramalan yang dapat yang menggabungkan unsur spasial (spatial) dan temporal (time) adalah Generalized Space Time Autoregressive (GSTAR). Pendugaan parameter yang digunakan adalah Seemingly Unrelated Regression (SUR). Peramalan iklim pada tanaman hortikultura pada masa kini sulit untuk diprediksi karena memiliki pola dan karakteristik yang sulit diidentifikasi dan dapat disebut aktivitas non linier. Unsur non linier ini dapat ditangkap oleh metode neural network. Penelitian ini ingin mengetahui hasil peramalan curah hujan pada 6 wilayah di Tengger menggunakan model GSTAR dengan pendugaan parameter menggunakan metode SUR dan digabungkan dengan neural network agar hasil peramalan yang lebih akurat. Data yang digunakan dalam penelitian ini adalah data curah hujan enam lokasi di wilayah Tengger, yakni Ngadirejo, Puspo, Wonokitri, Argosari, Ngadas, dan Wonokerto. Model yang tepat dalam melakukan peramalan pada data curah hujan pada 6 lokasi Tengger adalah model GSTAR (1,2,3,4,5,6,7,36(1)) Backpropagation Neural Network (96-120-6).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信