关于有邻接紧凑理想的半群 $\boldsymbol{B}_{[0,\infty)}$ 上的局部紧凑移位连续拓扑学

Q3 Mathematics
O. Gutik, Markian Khylynskyi
{"title":"关于有邻接紧凑理想的半群 $\\boldsymbol{B}_{[0,\\infty)}$ 上的局部紧凑移位连续拓扑学","authors":"O. Gutik, Markian Khylynskyi","doi":"10.30970/ms.61.1.10-21","DOIUrl":null,"url":null,"abstract":"Let $[0,\\infty)$ be the set of all non-negative real numbers. The set $\\boldsymbol{B}_{[0,\\infty)}=[0,\\infty)\\times [0,\\infty)$ with the following binary operation $(a,b)(c,d)=(a+c-\\min\\{b,c\\},b+d-\\min\\{b,c\\})$ is a bisimple inverse semigroup.In the paper we study Hausdorff locally compact shift-continuous topologies on the semigroup $\\boldsymbol{B}_{[0,\\infty)}$ with an adjoined compact ideal of the following tree types.The semigroup $\\boldsymbol{B}_{[0,\\infty)}$ with the induced usual topology $\\tau_u$ from $\\mathbb{R}^2$, with the topology $\\tau_L$ which is generated by the natural partial order on the inverse semigroup $\\boldsymbol{B}_{[0,\\infty)}$, and the discrete topology are denoted by $\\boldsymbol{B}^1_{[0,\\infty)}$, $\\boldsymbol{B}^2_{[0,\\infty)}$, and $\\boldsymbol{B}^{\\mathfrak{d}}_{[0,\\infty)}$, respectively. We show that if $S_1^I$ ($S_2^I$) is a Hausdorff locally compact semitopological semigroup $\\boldsymbol{B}^1_{[0,\\infty)}$ ($\\boldsymbol{B}^2_{[0,\\infty)}$) with an adjoined compact ideal $I$ then either $I$ is an open subset of $S_1^I$ ($S_2^I$) or the topological space $S_1^I$ ($S_2^I$) is compact. As a corollary we obtain that the topological space of a Hausdorff locally compact shift-continuous topology on $S^1_{\\boldsymbol{0}}=\\boldsymbol{B}^1_{[0,\\infty)}\\cup\\{\\boldsymbol{0}\\}$ (resp. $S^2_{\\boldsymbol{0}}=\\boldsymbol{B}^2_{[0,\\infty)}\\cup\\{\\boldsymbol{0}\\}$) with an adjoined zero $\\boldsymbol{0}$ is either homeomorphic to the one-point Alexandroff compactification of the topological space $\\boldsymbol{B}^1_{[0,\\infty)}$ (resp. $\\boldsymbol{B}^2_{[0,\\infty)}$) or zero is an isolated point of $S^1_{\\boldsymbol{0}}$ (resp. $S^2_{\\boldsymbol{0}}$).Also, we proved that if $S_{\\mathfrak{d}}^I$ is a Hausdorff locally compact semitopological semigroup $\\boldsymbol{B}^{\\mathfrak{d}}_{[0,\\infty)}$ with an adjoined compact ideal $I$ then $I$ is an open subset of $S_{\\mathfrak{d}}^I$.","PeriodicalId":37555,"journal":{"name":"Matematychni Studii","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On locally compact shift continuous topologies on the semigroup $\\\\boldsymbol{B}_{[0,\\\\infty)}$ with an adjoined compact ideal\",\"authors\":\"O. Gutik, Markian Khylynskyi\",\"doi\":\"10.30970/ms.61.1.10-21\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $[0,\\\\infty)$ be the set of all non-negative real numbers. The set $\\\\boldsymbol{B}_{[0,\\\\infty)}=[0,\\\\infty)\\\\times [0,\\\\infty)$ with the following binary operation $(a,b)(c,d)=(a+c-\\\\min\\\\{b,c\\\\},b+d-\\\\min\\\\{b,c\\\\})$ is a bisimple inverse semigroup.In the paper we study Hausdorff locally compact shift-continuous topologies on the semigroup $\\\\boldsymbol{B}_{[0,\\\\infty)}$ with an adjoined compact ideal of the following tree types.The semigroup $\\\\boldsymbol{B}_{[0,\\\\infty)}$ with the induced usual topology $\\\\tau_u$ from $\\\\mathbb{R}^2$, with the topology $\\\\tau_L$ which is generated by the natural partial order on the inverse semigroup $\\\\boldsymbol{B}_{[0,\\\\infty)}$, and the discrete topology are denoted by $\\\\boldsymbol{B}^1_{[0,\\\\infty)}$, $\\\\boldsymbol{B}^2_{[0,\\\\infty)}$, and $\\\\boldsymbol{B}^{\\\\mathfrak{d}}_{[0,\\\\infty)}$, respectively. We show that if $S_1^I$ ($S_2^I$) is a Hausdorff locally compact semitopological semigroup $\\\\boldsymbol{B}^1_{[0,\\\\infty)}$ ($\\\\boldsymbol{B}^2_{[0,\\\\infty)}$) with an adjoined compact ideal $I$ then either $I$ is an open subset of $S_1^I$ ($S_2^I$) or the topological space $S_1^I$ ($S_2^I$) is compact. As a corollary we obtain that the topological space of a Hausdorff locally compact shift-continuous topology on $S^1_{\\\\boldsymbol{0}}=\\\\boldsymbol{B}^1_{[0,\\\\infty)}\\\\cup\\\\{\\\\boldsymbol{0}\\\\}$ (resp. $S^2_{\\\\boldsymbol{0}}=\\\\boldsymbol{B}^2_{[0,\\\\infty)}\\\\cup\\\\{\\\\boldsymbol{0}\\\\}$) with an adjoined zero $\\\\boldsymbol{0}$ is either homeomorphic to the one-point Alexandroff compactification of the topological space $\\\\boldsymbol{B}^1_{[0,\\\\infty)}$ (resp. $\\\\boldsymbol{B}^2_{[0,\\\\infty)}$) or zero is an isolated point of $S^1_{\\\\boldsymbol{0}}$ (resp. $S^2_{\\\\boldsymbol{0}}$).Also, we proved that if $S_{\\\\mathfrak{d}}^I$ is a Hausdorff locally compact semitopological semigroup $\\\\boldsymbol{B}^{\\\\mathfrak{d}}_{[0,\\\\infty)}$ with an adjoined compact ideal $I$ then $I$ is an open subset of $S_{\\\\mathfrak{d}}^I$.\",\"PeriodicalId\":37555,\"journal\":{\"name\":\"Matematychni Studii\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Matematychni Studii\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30970/ms.61.1.10-21\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matematychni Studii","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30970/ms.61.1.10-21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

让 $[0,\infty)$ 是所有非负实数的集合。集合 $boldsymbol{B}_{[0,\infty)}=[0,\infty)\times[0,\infty)$具有如下二元运算 $(a,b)(c,d)=(a+c-\min\{b,c\},b+d-\min\{b,c\})$ 是一个双简单逆半群。本文将研究具有以下树型的邻接紧凑理想的半群 $\boldsymbol{B}_{[0,\infty)}$ 上的 Hausdorff 局部紧凑移位连续拓扑。半群 $\boldsymbol{B}_{[0,\infty)}$ 具有来自 $\mathbb{R}^2$ 的诱导通常拓扑 $\tau_u$,拓扑 $\tau_L$是由逆半群 $\boldsymbol{B}_{[0、\和离散拓扑分别用 $\boldsymbol{B}^1_{[0,\infty)}$, $\boldsymbol{B}^2_{[0,\infty)}$ 和 $\boldsymbol{B}^{mathfrak{d}}_{[0,\infty)}$ 表示。我们证明,如果 $S_1^I$ ($S_2^I$) 是一个 Hausdorff 局部紧凑半拓扑半群 $\boldsymbol{B}^1_{[0,\infty)}$ ($\boldsymbol{B}^2_{[0、\infty)}$)有一个邻接的紧凑理想 $I$,那么要么 $I$ 是 $S_1^I$ ($S_2^I$) 的开放子集,要么拓扑空间 $S_1^I$ ($S_2^I$) 是紧凑的。作为推论,我们可以得到在 $S^1_{\boldsymbol{0}}=\boldsymbol{B}^1_{[0,\infty)}\cup\{\boldsymbol{0}\}$(res.$S^2_{\boldsymbol{0}}=\boldsymbol{B}^2_{[0,\infty)}/cup\{boldsymbol{0}/}$)有一个邻接零$\boldsymbol{0}$要么与拓扑空间$\boldsymbol{B}^1_{[0,\infty)}$的一点亚历山德罗夫压缩同构(res.或零是 $S^1_{\boldsymbol{0}}$ (即 $S^2_{\boldsymbol{0}}$)的孤立点。此外,我们还证明了如果 $S_{\mathfrak{d}}^I$ 是一个具有邻接紧凑理想 $I$ 的 Hausdorff 局部紧凑半拓扑半群 $\boldsymbol{B}^{mathfrak{d}}_{[0,\infty)}$,那么 $I$ 是 $S_{\mathfrak{d}}^I$ 的一个开放子集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On locally compact shift continuous topologies on the semigroup $\boldsymbol{B}_{[0,\infty)}$ with an adjoined compact ideal
Let $[0,\infty)$ be the set of all non-negative real numbers. The set $\boldsymbol{B}_{[0,\infty)}=[0,\infty)\times [0,\infty)$ with the following binary operation $(a,b)(c,d)=(a+c-\min\{b,c\},b+d-\min\{b,c\})$ is a bisimple inverse semigroup.In the paper we study Hausdorff locally compact shift-continuous topologies on the semigroup $\boldsymbol{B}_{[0,\infty)}$ with an adjoined compact ideal of the following tree types.The semigroup $\boldsymbol{B}_{[0,\infty)}$ with the induced usual topology $\tau_u$ from $\mathbb{R}^2$, with the topology $\tau_L$ which is generated by the natural partial order on the inverse semigroup $\boldsymbol{B}_{[0,\infty)}$, and the discrete topology are denoted by $\boldsymbol{B}^1_{[0,\infty)}$, $\boldsymbol{B}^2_{[0,\infty)}$, and $\boldsymbol{B}^{\mathfrak{d}}_{[0,\infty)}$, respectively. We show that if $S_1^I$ ($S_2^I$) is a Hausdorff locally compact semitopological semigroup $\boldsymbol{B}^1_{[0,\infty)}$ ($\boldsymbol{B}^2_{[0,\infty)}$) with an adjoined compact ideal $I$ then either $I$ is an open subset of $S_1^I$ ($S_2^I$) or the topological space $S_1^I$ ($S_2^I$) is compact. As a corollary we obtain that the topological space of a Hausdorff locally compact shift-continuous topology on $S^1_{\boldsymbol{0}}=\boldsymbol{B}^1_{[0,\infty)}\cup\{\boldsymbol{0}\}$ (resp. $S^2_{\boldsymbol{0}}=\boldsymbol{B}^2_{[0,\infty)}\cup\{\boldsymbol{0}\}$) with an adjoined zero $\boldsymbol{0}$ is either homeomorphic to the one-point Alexandroff compactification of the topological space $\boldsymbol{B}^1_{[0,\infty)}$ (resp. $\boldsymbol{B}^2_{[0,\infty)}$) or zero is an isolated point of $S^1_{\boldsymbol{0}}$ (resp. $S^2_{\boldsymbol{0}}$).Also, we proved that if $S_{\mathfrak{d}}^I$ is a Hausdorff locally compact semitopological semigroup $\boldsymbol{B}^{\mathfrak{d}}_{[0,\infty)}$ with an adjoined compact ideal $I$ then $I$ is an open subset of $S_{\mathfrak{d}}^I$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Matematychni Studii
Matematychni Studii Mathematics-Mathematics (all)
CiteScore
1.00
自引率
0.00%
发文量
38
期刊介绍: Journal is devoted to research in all fields of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信