差速驱动移动机器人避障模糊逻辑的设计与实现

R. Puriyanto, Ahmad Kamal Mustofa
{"title":"差速驱动移动机器人避障模糊逻辑的设计与实现","authors":"R. Puriyanto, Ahmad Kamal Mustofa","doi":"10.18196/jrc.v5i1.20524","DOIUrl":null,"url":null,"abstract":"Autonomous mobile robots based on wheel drive are widely used in various applications. The differential drive mobile robot (DDMR) is one type with wheel drive. DDMR uses one actuator to move each wheel on the mobile robot. Autonomous capabilities are needed to avoid obstacles around the DDMR. This paper presents implementing a fuzzy logic algorithm for obstacle avoidance at a low cost (DDMR). The fuzzy logic algorithm input is obtained from three ultrasonic sensors installed in front of the DDMR with an angle difference between the sensors of 45$^0$. Distance information from the ultrasonic sensors is used to regulate the speed of the right and left motors of the DDMR. Based on the test results, the Mamdani inference system using the fuzzy logic algorithm was successfully implemented as an obstacle avoidance algorithm. The speed values of the right and left DDMR wheels produce values according to the rules created in the Mamdani inference system. DDMR managed to pass through a tunnel-shaped environment and reach its goal without hitting any obstacles around it. The average speed produced by DDMR in reaching the goal is 4.91 cm/s.","PeriodicalId":443428,"journal":{"name":"Journal of Robotics and Control (JRC)","volume":"47 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and Implementation of Fuzzy Logic for Obstacle Avoidance in Differential Drive Mobile Robot\",\"authors\":\"R. Puriyanto, Ahmad Kamal Mustofa\",\"doi\":\"10.18196/jrc.v5i1.20524\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Autonomous mobile robots based on wheel drive are widely used in various applications. The differential drive mobile robot (DDMR) is one type with wheel drive. DDMR uses one actuator to move each wheel on the mobile robot. Autonomous capabilities are needed to avoid obstacles around the DDMR. This paper presents implementing a fuzzy logic algorithm for obstacle avoidance at a low cost (DDMR). The fuzzy logic algorithm input is obtained from three ultrasonic sensors installed in front of the DDMR with an angle difference between the sensors of 45$^0$. Distance information from the ultrasonic sensors is used to regulate the speed of the right and left motors of the DDMR. Based on the test results, the Mamdani inference system using the fuzzy logic algorithm was successfully implemented as an obstacle avoidance algorithm. The speed values of the right and left DDMR wheels produce values according to the rules created in the Mamdani inference system. DDMR managed to pass through a tunnel-shaped environment and reach its goal without hitting any obstacles around it. The average speed produced by DDMR in reaching the goal is 4.91 cm/s.\",\"PeriodicalId\":443428,\"journal\":{\"name\":\"Journal of Robotics and Control (JRC)\",\"volume\":\"47 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Robotics and Control (JRC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18196/jrc.v5i1.20524\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Robotics and Control (JRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18196/jrc.v5i1.20524","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于轮驱动的自主移动机器人被广泛应用于各种领域。差速驱动移动机器人(DDMR)就是轮驱动的一种。DDMR 使用一个致动器来移动移动机器人上的每个轮子。为了避开 DDMR 周围的障碍物,需要具备自主能力。本文介绍了一种用于低成本避障的模糊逻辑算法(DDMR)。模糊逻辑算法的输入来自安装在 DDMR 前方的三个超声波传感器,传感器之间的角度差为 45$^0$。来自超声波传感器的距离信息用于调节 DDMR 左右电机的速度。根据测试结果,使用模糊逻辑算法的马姆达尼推理系统被成功地用作避障算法。DDMR 左右车轮的速度值根据马姆达尼推理系统创建的规则产生。DDMR 成功通过了隧道状环境,并在没有碰到周围任何障碍物的情况下到达了目标。DDMR 到达目标的平均速度为 4.91 厘米/秒。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design and Implementation of Fuzzy Logic for Obstacle Avoidance in Differential Drive Mobile Robot
Autonomous mobile robots based on wheel drive are widely used in various applications. The differential drive mobile robot (DDMR) is one type with wheel drive. DDMR uses one actuator to move each wheel on the mobile robot. Autonomous capabilities are needed to avoid obstacles around the DDMR. This paper presents implementing a fuzzy logic algorithm for obstacle avoidance at a low cost (DDMR). The fuzzy logic algorithm input is obtained from three ultrasonic sensors installed in front of the DDMR with an angle difference between the sensors of 45$^0$. Distance information from the ultrasonic sensors is used to regulate the speed of the right and left motors of the DDMR. Based on the test results, the Mamdani inference system using the fuzzy logic algorithm was successfully implemented as an obstacle avoidance algorithm. The speed values of the right and left DDMR wheels produce values according to the rules created in the Mamdani inference system. DDMR managed to pass through a tunnel-shaped environment and reach its goal without hitting any obstacles around it. The average speed produced by DDMR in reaching the goal is 4.91 cm/s.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信