{"title":"论仿射半规则多项式序列的希尔伯特-波因卡列数列及相关格罗布纳基","authors":"Momonari Kudo, Kazuhiro Yokoyama","doi":"10.48550/arXiv.2401.07768","DOIUrl":null,"url":null,"abstract":"Gr\\\"{o}bner bases are nowadays central tools for solving various problems in commutative algebra and algebraic geometry. A typical use of Gr\\\"{o}bner bases is the multivariate polynomial system solving, which enables us to construct algebraic attacks against post-quantum cryptographic protocols. Therefore, the determination of the complexity of computing Gr\\\"{o}bner bases is very important both in theory and in practice: One of the most important cases is the case where input polynomials compose an (overdetermined) affine semi-regular sequence. The first part of this paper aims to present a survey on Gr\\\"{o}bner basis computation and its complexity. In the second part, we shall give an explicit formula on the (truncated) Hilbert-Poincar\\'{e} series associated to the homogenization of an affine semi-regular sequence. Based on the formula, we also study (reduced) Gr\\\"{o}bner bases of the ideals generated by an affine semi-regular sequence and its homogenization. Some of our results are considered to give mathematically rigorous proofs of the correctness of methods for computing Gr\\\"{o}bner bases of the ideal generated by an affine semi-regular sequence.","PeriodicalId":508905,"journal":{"name":"IACR Cryptol. ePrint Arch.","volume":"3 3","pages":"86"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Hilbert-Poincaré series of affine semi-regular polynomial sequences and related Gröbner bases\",\"authors\":\"Momonari Kudo, Kazuhiro Yokoyama\",\"doi\":\"10.48550/arXiv.2401.07768\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gr\\\\\\\"{o}bner bases are nowadays central tools for solving various problems in commutative algebra and algebraic geometry. A typical use of Gr\\\\\\\"{o}bner bases is the multivariate polynomial system solving, which enables us to construct algebraic attacks against post-quantum cryptographic protocols. Therefore, the determination of the complexity of computing Gr\\\\\\\"{o}bner bases is very important both in theory and in practice: One of the most important cases is the case where input polynomials compose an (overdetermined) affine semi-regular sequence. The first part of this paper aims to present a survey on Gr\\\\\\\"{o}bner basis computation and its complexity. In the second part, we shall give an explicit formula on the (truncated) Hilbert-Poincar\\\\'{e} series associated to the homogenization of an affine semi-regular sequence. Based on the formula, we also study (reduced) Gr\\\\\\\"{o}bner bases of the ideals generated by an affine semi-regular sequence and its homogenization. Some of our results are considered to give mathematically rigorous proofs of the correctness of methods for computing Gr\\\\\\\"{o}bner bases of the ideal generated by an affine semi-regular sequence.\",\"PeriodicalId\":508905,\"journal\":{\"name\":\"IACR Cryptol. ePrint Arch.\",\"volume\":\"3 3\",\"pages\":\"86\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IACR Cryptol. ePrint Arch.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2401.07768\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IACR Cryptol. ePrint Arch.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2401.07768","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On Hilbert-Poincaré series of affine semi-regular polynomial sequences and related Gröbner bases
Gr\"{o}bner bases are nowadays central tools for solving various problems in commutative algebra and algebraic geometry. A typical use of Gr\"{o}bner bases is the multivariate polynomial system solving, which enables us to construct algebraic attacks against post-quantum cryptographic protocols. Therefore, the determination of the complexity of computing Gr\"{o}bner bases is very important both in theory and in practice: One of the most important cases is the case where input polynomials compose an (overdetermined) affine semi-regular sequence. The first part of this paper aims to present a survey on Gr\"{o}bner basis computation and its complexity. In the second part, we shall give an explicit formula on the (truncated) Hilbert-Poincar\'{e} series associated to the homogenization of an affine semi-regular sequence. Based on the formula, we also study (reduced) Gr\"{o}bner bases of the ideals generated by an affine semi-regular sequence and its homogenization. Some of our results are considered to give mathematically rigorous proofs of the correctness of methods for computing Gr\"{o}bner bases of the ideal generated by an affine semi-regular sequence.