O. V. Chugunova, P. Bikbulatov, A. S. Sokolov, N. V. Zavorokhina
{"title":"研究高静水压对豌豆分离蛋白功能特性的影响","authors":"O. V. Chugunova, P. Bikbulatov, A. S. Sokolov, N. V. Zavorokhina","doi":"10.47370/2072-0920-2023-19-4-183-189","DOIUrl":null,"url":null,"abstract":"The article presents the results of the influence of high hydrostatic pressure (HHP) on some functional properties of pea protein isolate. HHP was combined with different pH conditions to investigate the cumulative effect of HHP-based food processing conditions on the functional properties of pea protein isolate. Pea protein isolate solutions prepared at different pH conditions (5.0, 6.0, and 7.0) were subjected to HHP treatment at 200, 400, and 600 mPa at 18 °C for 5 min. The water resisting capacity (WRC), solubility and emulsifying properties of pea isolate samples were determined. It was found that treatment with NPP increased the VUS of pea protein isolates by 1.5 times. The greatest increase was observed in samples treated with a pressure of 400 mPa, at pH=7. An increase in solubility was found with an increase in pH from 6 to 7 when using a pressure of 400 and 600 mPa, however, for a sample of soybean isolate at pH 7 and a pressure of 200 mPa, on the contrary, a decrease in solubility was recorded. It has been shown that the effect of NPP on the emulsifying properties of pea protein depends on the processing conditions. In some cases, HPP can improve emulsifying properties, providing more stable emulsions. However, increasing exposure to high pressure up to 600 mPa leads to a decrease in emulsifying stability. The optimal parameters for using NPP for pea isolate proteins are a pH in the range of 6-7, and a pressure of 400 mPa.","PeriodicalId":516588,"journal":{"name":"New Technologies","volume":"34 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of the effect of high hydrostatic pressure on functional properties of pea protein isolate\",\"authors\":\"O. V. Chugunova, P. Bikbulatov, A. S. Sokolov, N. V. Zavorokhina\",\"doi\":\"10.47370/2072-0920-2023-19-4-183-189\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The article presents the results of the influence of high hydrostatic pressure (HHP) on some functional properties of pea protein isolate. HHP was combined with different pH conditions to investigate the cumulative effect of HHP-based food processing conditions on the functional properties of pea protein isolate. Pea protein isolate solutions prepared at different pH conditions (5.0, 6.0, and 7.0) were subjected to HHP treatment at 200, 400, and 600 mPa at 18 °C for 5 min. The water resisting capacity (WRC), solubility and emulsifying properties of pea isolate samples were determined. It was found that treatment with NPP increased the VUS of pea protein isolates by 1.5 times. The greatest increase was observed in samples treated with a pressure of 400 mPa, at pH=7. An increase in solubility was found with an increase in pH from 6 to 7 when using a pressure of 400 and 600 mPa, however, for a sample of soybean isolate at pH 7 and a pressure of 200 mPa, on the contrary, a decrease in solubility was recorded. It has been shown that the effect of NPP on the emulsifying properties of pea protein depends on the processing conditions. In some cases, HPP can improve emulsifying properties, providing more stable emulsions. However, increasing exposure to high pressure up to 600 mPa leads to a decrease in emulsifying stability. The optimal parameters for using NPP for pea isolate proteins are a pH in the range of 6-7, and a pressure of 400 mPa.\",\"PeriodicalId\":516588,\"journal\":{\"name\":\"New Technologies\",\"volume\":\"34 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"New Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47370/2072-0920-2023-19-4-183-189\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47370/2072-0920-2023-19-4-183-189","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Investigation of the effect of high hydrostatic pressure on functional properties of pea protein isolate
The article presents the results of the influence of high hydrostatic pressure (HHP) on some functional properties of pea protein isolate. HHP was combined with different pH conditions to investigate the cumulative effect of HHP-based food processing conditions on the functional properties of pea protein isolate. Pea protein isolate solutions prepared at different pH conditions (5.0, 6.0, and 7.0) were subjected to HHP treatment at 200, 400, and 600 mPa at 18 °C for 5 min. The water resisting capacity (WRC), solubility and emulsifying properties of pea isolate samples were determined. It was found that treatment with NPP increased the VUS of pea protein isolates by 1.5 times. The greatest increase was observed in samples treated with a pressure of 400 mPa, at pH=7. An increase in solubility was found with an increase in pH from 6 to 7 when using a pressure of 400 and 600 mPa, however, for a sample of soybean isolate at pH 7 and a pressure of 200 mPa, on the contrary, a decrease in solubility was recorded. It has been shown that the effect of NPP on the emulsifying properties of pea protein depends on the processing conditions. In some cases, HPP can improve emulsifying properties, providing more stable emulsions. However, increasing exposure to high pressure up to 600 mPa leads to a decrease in emulsifying stability. The optimal parameters for using NPP for pea isolate proteins are a pH in the range of 6-7, and a pressure of 400 mPa.