使用 Minirocket 强化和高效检测心房颤动

Celal Alagoz
{"title":"使用 Minirocket 强化和高效检测心房颤动","authors":"Celal Alagoz","doi":"10.29137/umagd.1409437","DOIUrl":null,"url":null,"abstract":"Atrial Fibrillation (AF) detection from intracardiac Electrogram (EGM) signals is a critical aspect of cardiovascular health monitoring. This study explores the application of Minirocket, a time series classification (TSC) algorithm, for robust and efficient AF detection. A comparative analysis is conducted against a deep learning approach using a subset of the dataset from Rodrigo et al. (2022). The study investigates the robustness of Minirocket in the face of shorter EGM sequences and varying training sizes, essential for real-world applications such as wearable and implanted devices. Empirical runtime analysis further assesses the efficiency of Minirocket in comparison to conventional machine learning (ML) algorithms. The results showcase Minirocket's notable performance, especially in scenarios with shorter signals and varying training sizes, making it a promising candidate for streamlined AF detection in emerging cardiovascular monitoring technologies. This research contributes to the optimization of AF detection algorithms for increased efficiency and adaptability to dynamic clinical scenarios.","PeriodicalId":23481,"journal":{"name":"Uluslararası Muhendislik Arastirma ve Gelistirme Dergisi","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Minirocket Kullanarak Güçlendirilmiş ve Verimli Atriyal Fibrilasyon Tespiti\",\"authors\":\"Celal Alagoz\",\"doi\":\"10.29137/umagd.1409437\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Atrial Fibrillation (AF) detection from intracardiac Electrogram (EGM) signals is a critical aspect of cardiovascular health monitoring. This study explores the application of Minirocket, a time series classification (TSC) algorithm, for robust and efficient AF detection. A comparative analysis is conducted against a deep learning approach using a subset of the dataset from Rodrigo et al. (2022). The study investigates the robustness of Minirocket in the face of shorter EGM sequences and varying training sizes, essential for real-world applications such as wearable and implanted devices. Empirical runtime analysis further assesses the efficiency of Minirocket in comparison to conventional machine learning (ML) algorithms. The results showcase Minirocket's notable performance, especially in scenarios with shorter signals and varying training sizes, making it a promising candidate for streamlined AF detection in emerging cardiovascular monitoring technologies. This research contributes to the optimization of AF detection algorithms for increased efficiency and adaptability to dynamic clinical scenarios.\",\"PeriodicalId\":23481,\"journal\":{\"name\":\"Uluslararası Muhendislik Arastirma ve Gelistirme Dergisi\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Uluslararası Muhendislik Arastirma ve Gelistirme Dergisi\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29137/umagd.1409437\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Uluslararası Muhendislik Arastirma ve Gelistirme Dergisi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29137/umagd.1409437","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

从心电图(EGM)信号中检测心房颤动(AF)是心血管健康监测的一个重要方面。本研究探索了时间序列分类(TSC)算法 Minirocket 在稳健高效的房颤检测中的应用。利用 Rodrigo 等人(2022 年)的数据集子集与深度学习方法进行了对比分析。该研究调查了 Minirocket 在面对较短 EGM 序列和不同训练规模时的鲁棒性,这对可穿戴和植入式设备等实际应用至关重要。经验运行时间分析进一步评估了 Minirocket 与传统机器学习(ML)算法相比的效率。研究结果表明,Minirocket 性能显著,尤其是在信号较短和训练规模各异的情况下,使其成为新兴心血管监测技术中简化房颤检测的理想候选方案。这项研究有助于优化房颤检测算法,以提高效率和对动态临床场景的适应性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Minirocket Kullanarak Güçlendirilmiş ve Verimli Atriyal Fibrilasyon Tespiti
Atrial Fibrillation (AF) detection from intracardiac Electrogram (EGM) signals is a critical aspect of cardiovascular health monitoring. This study explores the application of Minirocket, a time series classification (TSC) algorithm, for robust and efficient AF detection. A comparative analysis is conducted against a deep learning approach using a subset of the dataset from Rodrigo et al. (2022). The study investigates the robustness of Minirocket in the face of shorter EGM sequences and varying training sizes, essential for real-world applications such as wearable and implanted devices. Empirical runtime analysis further assesses the efficiency of Minirocket in comparison to conventional machine learning (ML) algorithms. The results showcase Minirocket's notable performance, especially in scenarios with shorter signals and varying training sizes, making it a promising candidate for streamlined AF detection in emerging cardiovascular monitoring technologies. This research contributes to the optimization of AF detection algorithms for increased efficiency and adaptability to dynamic clinical scenarios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信