Rogers Ademir Drunn Pereira, Carlito Vieira de Moraes, Luis Carlos Timm
{"title":"重新审视变异图和协方差","authors":"Rogers Ademir Drunn Pereira, Carlito Vieira de Moraes, Luis Carlos Timm","doi":"10.14393/rbcv76n0a-68982","DOIUrl":null,"url":null,"abstract":"Este trabalho revisa as funções covariância empírica (CE) e o variograma (VAR), associadas a Colocação por Mínimos Quadrados (CMQ) e a Krigagem, respectivamente. O texto almeja facilitar o aprendizado da técnica aos interessados e chamar a atenção para questões específicas relacionadas às projeções cartográficas. A CMQ e a krigagem são técnicas adotadas nas geociências para análise, predição e interpolação/extrapolação de dados. A sua aplicação adequada pode ser entendida em duas etapas principais: 1) a criação de mais de uma função, CE ou VAR, dependendo do modo como ela foi construída, e 2) o ajustamento dessa função, usualmente adotando o Método dos Mínimos Quadrados (MMQ) para fazer a predição. Este trabalho está concentrado nas funções CE e VAR de modo a recuperar suas definições mais originais com exemplos confeccionados pelos autores. Como aplicação, apresenta diferenças construtivas das CE e VAR geradas partir de coordenadas curvilíneas dos Sistemas Geodésicos de Referência e coordenadas dos Sistemas Projetivos. A exposição dos coeficientes ajustados pelo MMQ torna evidente as diferentes respostas. Por último, sugere cuidados importantes na utilização destas funções a partir de sistemas projetivos.","PeriodicalId":36183,"journal":{"name":"Revista Brasileira de Cartografia","volume":"43 1-4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Revisitando o variograma e covariância\",\"authors\":\"Rogers Ademir Drunn Pereira, Carlito Vieira de Moraes, Luis Carlos Timm\",\"doi\":\"10.14393/rbcv76n0a-68982\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Este trabalho revisa as funções covariância empírica (CE) e o variograma (VAR), associadas a Colocação por Mínimos Quadrados (CMQ) e a Krigagem, respectivamente. O texto almeja facilitar o aprendizado da técnica aos interessados e chamar a atenção para questões específicas relacionadas às projeções cartográficas. A CMQ e a krigagem são técnicas adotadas nas geociências para análise, predição e interpolação/extrapolação de dados. A sua aplicação adequada pode ser entendida em duas etapas principais: 1) a criação de mais de uma função, CE ou VAR, dependendo do modo como ela foi construída, e 2) o ajustamento dessa função, usualmente adotando o Método dos Mínimos Quadrados (MMQ) para fazer a predição. Este trabalho está concentrado nas funções CE e VAR de modo a recuperar suas definições mais originais com exemplos confeccionados pelos autores. Como aplicação, apresenta diferenças construtivas das CE e VAR geradas partir de coordenadas curvilíneas dos Sistemas Geodésicos de Referência e coordenadas dos Sistemas Projetivos. A exposição dos coeficientes ajustados pelo MMQ torna evidente as diferentes respostas. Por último, sugere cuidados importantes na utilização destas funções a partir de sistemas projetivos.\",\"PeriodicalId\":36183,\"journal\":{\"name\":\"Revista Brasileira de Cartografia\",\"volume\":\"43 1-4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Brasileira de Cartografia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14393/rbcv76n0a-68982\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Brasileira de Cartografia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14393/rbcv76n0a-68982","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 0
摘要
本文回顾了分别与最小二乘法拟合(LSF)和克里格法相关的经验协方差(EC)和变异图(VAR)函数。本文旨在帮助有兴趣的读者更轻松地学习相关技术,并提请读者注意与制图投影相关的具体问题。QMC 和克里金法是地质科学中用于分析、预测和内插/外推数据的技术。它们的正确应用可分为两个主要阶段:1)创建一个以上的函数,CE 或 VAR,取决于它是如何构建的;2)调整该函数,通常使用最小二乘法(LSM)进行预测。这项工作集中于 CE 和 VAR 函数,以便通过作者制作的示例恢复其最原始的定义。作为应用,它介绍了根据大地参考系曲线坐标和投影系坐标生成的 CE 和 VAR 的构造差异。MMQ 调整系数的显示使不同的反应显而易见。最后,它提出了使用这些来自投影系统的函数时的重要注意事项。
Este trabalho revisa as funções covariância empírica (CE) e o variograma (VAR), associadas a Colocação por Mínimos Quadrados (CMQ) e a Krigagem, respectivamente. O texto almeja facilitar o aprendizado da técnica aos interessados e chamar a atenção para questões específicas relacionadas às projeções cartográficas. A CMQ e a krigagem são técnicas adotadas nas geociências para análise, predição e interpolação/extrapolação de dados. A sua aplicação adequada pode ser entendida em duas etapas principais: 1) a criação de mais de uma função, CE ou VAR, dependendo do modo como ela foi construída, e 2) o ajustamento dessa função, usualmente adotando o Método dos Mínimos Quadrados (MMQ) para fazer a predição. Este trabalho está concentrado nas funções CE e VAR de modo a recuperar suas definições mais originais com exemplos confeccionados pelos autores. Como aplicação, apresenta diferenças construtivas das CE e VAR geradas partir de coordenadas curvilíneas dos Sistemas Geodésicos de Referência e coordenadas dos Sistemas Projetivos. A exposição dos coeficientes ajustados pelo MMQ torna evidente as diferentes respostas. Por último, sugere cuidados importantes na utilização destas funções a partir de sistemas projetivos.