闵科夫斯基 4 空间中具有平行归一化平均曲率矢量场的时间拟曲面

IF 0.8 4区 数学 Q2 MATHEMATICS
Victoria Bencheva, V. Milousheva
{"title":"闵科夫斯基 4 空间中具有平行归一化平均曲率矢量场的时间拟曲面","authors":"Victoria Bencheva, V. Milousheva","doi":"10.55730/1300-0098.3509","DOIUrl":null,"url":null,"abstract":"In the present paper, we study timelike surfaces with parallel normalized mean curvature vector field in the four-dimensional Minkowski space. We introduce special isotropic parameters on each such surface, which we call canonical parameters, and prove a fundamental existence and uniqueness theorem stating that each timelike surface with parallel normalized mean curvature vector field is determined up to a rigid motion in the Minkowski space by three geometric functions satisfying a system of three partial differential equations. In this way we minimize the number of functions and the number of partial differential equations determining the surface, thus solving the Lund-Regge problem for this class of surfaces.","PeriodicalId":51206,"journal":{"name":"Turkish Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Timelike surfaces with parallel normalized mean curvature vector field in the\\nMinkowski 4-space\",\"authors\":\"Victoria Bencheva, V. Milousheva\",\"doi\":\"10.55730/1300-0098.3509\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the present paper, we study timelike surfaces with parallel normalized mean curvature vector field in the four-dimensional Minkowski space. We introduce special isotropic parameters on each such surface, which we call canonical parameters, and prove a fundamental existence and uniqueness theorem stating that each timelike surface with parallel normalized mean curvature vector field is determined up to a rigid motion in the Minkowski space by three geometric functions satisfying a system of three partial differential equations. In this way we minimize the number of functions and the number of partial differential equations determining the surface, thus solving the Lund-Regge problem for this class of surfaces.\",\"PeriodicalId\":51206,\"journal\":{\"name\":\"Turkish Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Turkish Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.55730/1300-0098.3509\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Turkish Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.55730/1300-0098.3509","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

本文研究四维闵科夫斯基空间中具有平行归一化平均曲率矢量场的时间拟曲面。我们在每个这样的曲面上引入了特殊的各向同性参数(我们称之为规范参数),并证明了一个基本的存在性和唯一性定理,即每个具有平行归一化平均曲率矢量场的类时间曲面都是由满足三个偏微分方程系统的三个几何函数决定的,直至在闵科夫斯基空间中的刚性运动。通过这种方法,我们将决定曲面的函数数和偏微分方程数最小化,从而解决了这一类曲面的伦德-里格问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Timelike surfaces with parallel normalized mean curvature vector field in the Minkowski 4-space
In the present paper, we study timelike surfaces with parallel normalized mean curvature vector field in the four-dimensional Minkowski space. We introduce special isotropic parameters on each such surface, which we call canonical parameters, and prove a fundamental existence and uniqueness theorem stating that each timelike surface with parallel normalized mean curvature vector field is determined up to a rigid motion in the Minkowski space by three geometric functions satisfying a system of three partial differential equations. In this way we minimize the number of functions and the number of partial differential equations determining the surface, thus solving the Lund-Regge problem for this class of surfaces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.80
自引率
10.00%
发文量
161
审稿时长
6-12 weeks
期刊介绍: The Turkish Journal of Mathematics is published electronically 6 times a year by the Scientific and Technological Research Council of Turkey (TÜBİTAK) and accepts English-language original research manuscripts in the field of mathematics. Contribution is open to researchers of all nationalities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信