{"title":"GPU 上的快速 Kronecker 矩阵-矩阵乘法","authors":"Abhinav Jangda, Mohit Yadav","doi":"10.1145/3627535.3638489","DOIUrl":null,"url":null,"abstract":"Kronecker Matrix-Matrix Multiplication (Kron-Matmul) is the multiplication of a matrix with the Kronecker Product of several smaller matrices. Kron-Matmul is a core operation for many scientific and machine learning computations. State-of-the-art Kron-Matmul implementations utilize existing tensor algebra operations, such as matrix multiplication, transpose, and tensor matrix multiplication. However, this design choice prevents several Kron-Matmul specific optimizations, thus, leaving significant performance on the table. To address this issue, we present FastKron, an efficient technique for Kron-Matmul on single and multiple GPUs. FastKron is independent of linear algebra operations enabling several new optimizations for Kron-Matmul. Thus, it performs up to 40.7x and 7.85x faster than existing implementations on 1 and 16 GPUs respectively.","PeriodicalId":286119,"journal":{"name":"ACM SIGPLAN Symposium on Principles & Practice of Parallel Programming","volume":"242 9","pages":"390-403"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fast Kronecker Matrix-Matrix Multiplication on GPUs\",\"authors\":\"Abhinav Jangda, Mohit Yadav\",\"doi\":\"10.1145/3627535.3638489\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Kronecker Matrix-Matrix Multiplication (Kron-Matmul) is the multiplication of a matrix with the Kronecker Product of several smaller matrices. Kron-Matmul is a core operation for many scientific and machine learning computations. State-of-the-art Kron-Matmul implementations utilize existing tensor algebra operations, such as matrix multiplication, transpose, and tensor matrix multiplication. However, this design choice prevents several Kron-Matmul specific optimizations, thus, leaving significant performance on the table. To address this issue, we present FastKron, an efficient technique for Kron-Matmul on single and multiple GPUs. FastKron is independent of linear algebra operations enabling several new optimizations for Kron-Matmul. Thus, it performs up to 40.7x and 7.85x faster than existing implementations on 1 and 16 GPUs respectively.\",\"PeriodicalId\":286119,\"journal\":{\"name\":\"ACM SIGPLAN Symposium on Principles & Practice of Parallel Programming\",\"volume\":\"242 9\",\"pages\":\"390-403\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM SIGPLAN Symposium on Principles & Practice of Parallel Programming\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3627535.3638489\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SIGPLAN Symposium on Principles & Practice of Parallel Programming","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3627535.3638489","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fast Kronecker Matrix-Matrix Multiplication on GPUs
Kronecker Matrix-Matrix Multiplication (Kron-Matmul) is the multiplication of a matrix with the Kronecker Product of several smaller matrices. Kron-Matmul is a core operation for many scientific and machine learning computations. State-of-the-art Kron-Matmul implementations utilize existing tensor algebra operations, such as matrix multiplication, transpose, and tensor matrix multiplication. However, this design choice prevents several Kron-Matmul specific optimizations, thus, leaving significant performance on the table. To address this issue, we present FastKron, an efficient technique for Kron-Matmul on single and multiple GPUs. FastKron is independent of linear algebra operations enabling several new optimizations for Kron-Matmul. Thus, it performs up to 40.7x and 7.85x faster than existing implementations on 1 and 16 GPUs respectively.