GPU 上的快速 Kronecker 矩阵-矩阵乘法

Abhinav Jangda, Mohit Yadav
{"title":"GPU 上的快速 Kronecker 矩阵-矩阵乘法","authors":"Abhinav Jangda, Mohit Yadav","doi":"10.1145/3627535.3638489","DOIUrl":null,"url":null,"abstract":"Kronecker Matrix-Matrix Multiplication (Kron-Matmul) is the multiplication of a matrix with the Kronecker Product of several smaller matrices. Kron-Matmul is a core operation for many scientific and machine learning computations. State-of-the-art Kron-Matmul implementations utilize existing tensor algebra operations, such as matrix multiplication, transpose, and tensor matrix multiplication. However, this design choice prevents several Kron-Matmul specific optimizations, thus, leaving significant performance on the table. To address this issue, we present FastKron, an efficient technique for Kron-Matmul on single and multiple GPUs. FastKron is independent of linear algebra operations enabling several new optimizations for Kron-Matmul. Thus, it performs up to 40.7x and 7.85x faster than existing implementations on 1 and 16 GPUs respectively.","PeriodicalId":286119,"journal":{"name":"ACM SIGPLAN Symposium on Principles & Practice of Parallel Programming","volume":"242 9","pages":"390-403"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fast Kronecker Matrix-Matrix Multiplication on GPUs\",\"authors\":\"Abhinav Jangda, Mohit Yadav\",\"doi\":\"10.1145/3627535.3638489\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Kronecker Matrix-Matrix Multiplication (Kron-Matmul) is the multiplication of a matrix with the Kronecker Product of several smaller matrices. Kron-Matmul is a core operation for many scientific and machine learning computations. State-of-the-art Kron-Matmul implementations utilize existing tensor algebra operations, such as matrix multiplication, transpose, and tensor matrix multiplication. However, this design choice prevents several Kron-Matmul specific optimizations, thus, leaving significant performance on the table. To address this issue, we present FastKron, an efficient technique for Kron-Matmul on single and multiple GPUs. FastKron is independent of linear algebra operations enabling several new optimizations for Kron-Matmul. Thus, it performs up to 40.7x and 7.85x faster than existing implementations on 1 and 16 GPUs respectively.\",\"PeriodicalId\":286119,\"journal\":{\"name\":\"ACM SIGPLAN Symposium on Principles & Practice of Parallel Programming\",\"volume\":\"242 9\",\"pages\":\"390-403\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM SIGPLAN Symposium on Principles & Practice of Parallel Programming\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3627535.3638489\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SIGPLAN Symposium on Principles & Practice of Parallel Programming","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3627535.3638489","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

克罗内克矩阵-矩阵乘法(Kron-Matmul)是将一个矩阵与几个较小矩阵的克罗内克乘积相乘。Kron-Matmul 是许多科学和机器学习计算的核心运算。最先进的 Kron-Matmul 实现利用了现有的张量代数运算,如矩阵乘法、转置和张量矩阵乘法。然而,这种设计选择阻碍了几种 Kron-Matmul 特定的优化,从而使性能大打折扣。为了解决这个问题,我们提出了在单个和多个 GPU 上实现 Kron-Matmul 的高效技术 FastKron。FastKron 独立于线性代数运算,可对 Kron-Matmul 进行多项新的优化。因此,在 1 个和 16 个 GPU 上,它的性能分别比现有实现快 40.7 倍和 7.85 倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast Kronecker Matrix-Matrix Multiplication on GPUs
Kronecker Matrix-Matrix Multiplication (Kron-Matmul) is the multiplication of a matrix with the Kronecker Product of several smaller matrices. Kron-Matmul is a core operation for many scientific and machine learning computations. State-of-the-art Kron-Matmul implementations utilize existing tensor algebra operations, such as matrix multiplication, transpose, and tensor matrix multiplication. However, this design choice prevents several Kron-Matmul specific optimizations, thus, leaving significant performance on the table. To address this issue, we present FastKron, an efficient technique for Kron-Matmul on single and multiple GPUs. FastKron is independent of linear algebra operations enabling several new optimizations for Kron-Matmul. Thus, it performs up to 40.7x and 7.85x faster than existing implementations on 1 and 16 GPUs respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信