{"title":"无需特征工程的情感脑电图分析方法","authors":"Jian Zhang, Chunying Fang, Yanghao Wu, Mingjie Chang","doi":"10.26689/jera.v8i1.5938","DOIUrl":null,"url":null,"abstract":"Emotional electroencephalography (EEG) signals are a primary means of recording emotional brain activity.Currently, the most effective methods for analyzing emotional EEG signals involve feature engineering and neuralnetworks. However, neural networks possess a strong ability for automatic feature extraction. Is it possible to discardfeature engineering and directly employ neural networks for end-to-end recognition? Based on the characteristics of EEGsignals, this paper proposes an end-to-end feature extraction and classification method for a dynamic self-attention network(DySAT). The study reveals significant differences in brain activity patterns associated with different emotions acrossvarious experimenters and time periods. The results of this experiment can provide insights into the reasons behind thesedifferences.","PeriodicalId":508251,"journal":{"name":"Journal of Electronic Research and Application","volume":"14 8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Affective EEG Analysis Method Without Feature Engineering\",\"authors\":\"Jian Zhang, Chunying Fang, Yanghao Wu, Mingjie Chang\",\"doi\":\"10.26689/jera.v8i1.5938\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Emotional electroencephalography (EEG) signals are a primary means of recording emotional brain activity.Currently, the most effective methods for analyzing emotional EEG signals involve feature engineering and neuralnetworks. However, neural networks possess a strong ability for automatic feature extraction. Is it possible to discardfeature engineering and directly employ neural networks for end-to-end recognition? Based on the characteristics of EEGsignals, this paper proposes an end-to-end feature extraction and classification method for a dynamic self-attention network(DySAT). The study reveals significant differences in brain activity patterns associated with different emotions acrossvarious experimenters and time periods. The results of this experiment can provide insights into the reasons behind thesedifferences.\",\"PeriodicalId\":508251,\"journal\":{\"name\":\"Journal of Electronic Research and Application\",\"volume\":\"14 8\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electronic Research and Application\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26689/jera.v8i1.5938\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electronic Research and Application","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26689/jera.v8i1.5938","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An Affective EEG Analysis Method Without Feature Engineering
Emotional electroencephalography (EEG) signals are a primary means of recording emotional brain activity.Currently, the most effective methods for analyzing emotional EEG signals involve feature engineering and neuralnetworks. However, neural networks possess a strong ability for automatic feature extraction. Is it possible to discardfeature engineering and directly employ neural networks for end-to-end recognition? Based on the characteristics of EEGsignals, this paper proposes an end-to-end feature extraction and classification method for a dynamic self-attention network(DySAT). The study reveals significant differences in brain activity patterns associated with different emotions acrossvarious experimenters and time periods. The results of this experiment can provide insights into the reasons behind thesedifferences.