无需特征工程的情感脑电图分析方法

Jian Zhang, Chunying Fang, Yanghao Wu, Mingjie Chang
{"title":"无需特征工程的情感脑电图分析方法","authors":"Jian Zhang, Chunying Fang, Yanghao Wu, Mingjie Chang","doi":"10.26689/jera.v8i1.5938","DOIUrl":null,"url":null,"abstract":"Emotional electroencephalography (EEG) signals are a primary means of recording emotional brain activity.Currently, the most effective methods for analyzing emotional EEG signals involve feature engineering and neuralnetworks. However, neural networks possess a strong ability for automatic feature extraction. Is it possible to discardfeature engineering and directly employ neural networks for end-to-end recognition? Based on the characteristics of EEGsignals, this paper proposes an end-to-end feature extraction and classification method for a dynamic self-attention network(DySAT). The study reveals significant differences in brain activity patterns associated with different emotions acrossvarious experimenters and time periods. The results of this experiment can provide insights into the reasons behind thesedifferences.","PeriodicalId":508251,"journal":{"name":"Journal of Electronic Research and Application","volume":"14 8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Affective EEG Analysis Method Without Feature Engineering\",\"authors\":\"Jian Zhang, Chunying Fang, Yanghao Wu, Mingjie Chang\",\"doi\":\"10.26689/jera.v8i1.5938\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Emotional electroencephalography (EEG) signals are a primary means of recording emotional brain activity.Currently, the most effective methods for analyzing emotional EEG signals involve feature engineering and neuralnetworks. However, neural networks possess a strong ability for automatic feature extraction. Is it possible to discardfeature engineering and directly employ neural networks for end-to-end recognition? Based on the characteristics of EEGsignals, this paper proposes an end-to-end feature extraction and classification method for a dynamic self-attention network(DySAT). The study reveals significant differences in brain activity patterns associated with different emotions acrossvarious experimenters and time periods. The results of this experiment can provide insights into the reasons behind thesedifferences.\",\"PeriodicalId\":508251,\"journal\":{\"name\":\"Journal of Electronic Research and Application\",\"volume\":\"14 8\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electronic Research and Application\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26689/jera.v8i1.5938\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electronic Research and Application","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26689/jera.v8i1.5938","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

情绪脑电图(EEG)信号是记录大脑情绪活动的主要手段。目前,分析情绪脑电图信号最有效的方法包括特征工程和神经网络。然而,神经网络具有很强的自动特征提取能力。是否可以摒弃特征工程,直接采用神经网络进行端到端的识别呢?本文根据脑电信号的特点,提出了一种端到端的动态自我注意网络(DySAT)特征提取和分类方法。研究揭示了不同实验者和不同时间段内与不同情绪相关的大脑活动模式的显著差异。该实验结果可以帮助人们深入了解这些差异背后的原因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Affective EEG Analysis Method Without Feature Engineering
Emotional electroencephalography (EEG) signals are a primary means of recording emotional brain activity.Currently, the most effective methods for analyzing emotional EEG signals involve feature engineering and neuralnetworks. However, neural networks possess a strong ability for automatic feature extraction. Is it possible to discardfeature engineering and directly employ neural networks for end-to-end recognition? Based on the characteristics of EEGsignals, this paper proposes an end-to-end feature extraction and classification method for a dynamic self-attention network(DySAT). The study reveals significant differences in brain activity patterns associated with different emotions acrossvarious experimenters and time periods. The results of this experiment can provide insights into the reasons behind thesedifferences.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信