使用生成式人工智能进行以证据为中心的写作评估

Yixin Cheng, Kayley Lyons, Guanliang Chen, D. Gašević, Z. Swiecki
{"title":"使用生成式人工智能进行以证据为中心的写作评估","authors":"Yixin Cheng, Kayley Lyons, Guanliang Chen, D. Gašević, Z. Swiecki","doi":"10.48550/arXiv.2401.08964","DOIUrl":null,"url":null,"abstract":"We propose a learning analytics-based methodology for assessing the collaborative writing of humans and generative artificial intelligence. Framed by the evidence-centered design, we used elements of knowledge-telling, knowledge transformation, and cognitive presence to identify assessment claims; we used data collected from the CoAuthor writing tool as potential evidence for these claims; and we used epistemic network analysis to make inferences from the data about the claims. Our findings revealed significant differences in the writing processes of different groups of CoAuthor users, suggesting that our method is a plausible approach to assessing human-AI collaborative writing.","PeriodicalId":162301,"journal":{"name":"International Conference on Learning Analytics and Knowledge","volume":"230 6","pages":"178-188"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evidence-centered Assessment for Writing with Generative AI\",\"authors\":\"Yixin Cheng, Kayley Lyons, Guanliang Chen, D. Gašević, Z. Swiecki\",\"doi\":\"10.48550/arXiv.2401.08964\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a learning analytics-based methodology for assessing the collaborative writing of humans and generative artificial intelligence. Framed by the evidence-centered design, we used elements of knowledge-telling, knowledge transformation, and cognitive presence to identify assessment claims; we used data collected from the CoAuthor writing tool as potential evidence for these claims; and we used epistemic network analysis to make inferences from the data about the claims. Our findings revealed significant differences in the writing processes of different groups of CoAuthor users, suggesting that our method is a plausible approach to assessing human-AI collaborative writing.\",\"PeriodicalId\":162301,\"journal\":{\"name\":\"International Conference on Learning Analytics and Knowledge\",\"volume\":\"230 6\",\"pages\":\"178-188\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Learning Analytics and Knowledge\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2401.08964\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Learning Analytics and Knowledge","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2401.08964","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种基于学习分析的方法,用于评估人类与生成式人工智能的协作写作。在以证据为中心的设计框架下,我们使用知识讲述、知识转化和认知存在等要素来确定评估主张;我们使用从CoAuthor写作工具中收集的数据作为这些主张的潜在证据;我们使用认识论网络分析从数据中对主张进行推断。我们的研究结果表明,不同群体的CoAuthor用户在写作过程中存在明显差异,这表明我们的方法是评估人类-人工智能协作写作的一种可行方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evidence-centered Assessment for Writing with Generative AI
We propose a learning analytics-based methodology for assessing the collaborative writing of humans and generative artificial intelligence. Framed by the evidence-centered design, we used elements of knowledge-telling, knowledge transformation, and cognitive presence to identify assessment claims; we used data collected from the CoAuthor writing tool as potential evidence for these claims; and we used epistemic network analysis to make inferences from the data about the claims. Our findings revealed significant differences in the writing processes of different groups of CoAuthor users, suggesting that our method is a plausible approach to assessing human-AI collaborative writing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信