利用线性回归分析对苏门答腊岛水稻生产数据挖掘的应用

Yohanes R Nababan, I. Nugraha
{"title":"利用线性回归分析对苏门答腊岛水稻生产数据挖掘的应用","authors":"Yohanes R Nababan, I. Nugraha","doi":"10.31004/jutin.v7i1.23545","DOIUrl":null,"url":null,"abstract":"Indonesia, primarily an agrarian nation, relies heavily on farming as a livelihood, particularly in rice production. Rice is a crucial commodity, especially in Sumatra. Understanding the influential factors such as rainfall, humidity, average temperature, and harvest area is vital for effective rice production. This research applies the CRISP-DM method: Business Understanding, Data Understanding, Data Preparation, and Modeling. Multiple linear regression analysis is employed using Python programming in Google Colab to assess the impact of these factors on rice production. Results indicate that rainfall, humidity, and average temperature insignificantly affect rice production, while harvest area significantly influences it. The regression model is expressed as Y = 12.3X1 + 1637.1X2 – 159677.3X3 + 5.1X4. This model provides valuable insights for farmers to prioritize influential factors in future rice production","PeriodicalId":17759,"journal":{"name":"Jurnal Teknik Industri Terintegrasi","volume":"50 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Penerapan Data Mining Produksi Padi di Pulau Sumatera Menggunakan Analisis Regresi Linear\",\"authors\":\"Yohanes R Nababan, I. Nugraha\",\"doi\":\"10.31004/jutin.v7i1.23545\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Indonesia, primarily an agrarian nation, relies heavily on farming as a livelihood, particularly in rice production. Rice is a crucial commodity, especially in Sumatra. Understanding the influential factors such as rainfall, humidity, average temperature, and harvest area is vital for effective rice production. This research applies the CRISP-DM method: Business Understanding, Data Understanding, Data Preparation, and Modeling. Multiple linear regression analysis is employed using Python programming in Google Colab to assess the impact of these factors on rice production. Results indicate that rainfall, humidity, and average temperature insignificantly affect rice production, while harvest area significantly influences it. The regression model is expressed as Y = 12.3X1 + 1637.1X2 – 159677.3X3 + 5.1X4. This model provides valuable insights for farmers to prioritize influential factors in future rice production\",\"PeriodicalId\":17759,\"journal\":{\"name\":\"Jurnal Teknik Industri Terintegrasi\",\"volume\":\"50 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Teknik Industri Terintegrasi\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31004/jutin.v7i1.23545\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Teknik Industri Terintegrasi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31004/jutin.v7i1.23545","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

印度尼西亚是一个以农业为主的国家,主要依靠农业为生,尤其是水稻生产。大米是一种重要的商品,尤其是在苏门答腊岛。了解降雨量、湿度、平均气温和收获面积等影响因素对有效的水稻生产至关重要。本研究采用了 CRISP-DM 方法:业务理解、数据理解、数据准备和建模。使用 Google Colab 中的 Python 编程进行多元线性回归分析,以评估这些因素对水稻生产的影响。结果表明,降雨量、湿度和平均气温对水稻产量的影响微乎其微,而收获面积则对水稻产量有显著影响。回归模型表示为 Y = 12.3X1 + 1637.1X2 - 159677.3X3 + 5.1X4。该模型为农民在未来水稻生产中优先考虑影响因素提供了宝贵的启示
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Penerapan Data Mining Produksi Padi di Pulau Sumatera Menggunakan Analisis Regresi Linear
Indonesia, primarily an agrarian nation, relies heavily on farming as a livelihood, particularly in rice production. Rice is a crucial commodity, especially in Sumatra. Understanding the influential factors such as rainfall, humidity, average temperature, and harvest area is vital for effective rice production. This research applies the CRISP-DM method: Business Understanding, Data Understanding, Data Preparation, and Modeling. Multiple linear regression analysis is employed using Python programming in Google Colab to assess the impact of these factors on rice production. Results indicate that rainfall, humidity, and average temperature insignificantly affect rice production, while harvest area significantly influences it. The regression model is expressed as Y = 12.3X1 + 1637.1X2 – 159677.3X3 + 5.1X4. This model provides valuable insights for farmers to prioritize influential factors in future rice production
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信