对网民仇恨言论进行舆情挖掘的机器学习

Mutiana Pratiwi, Rima Liana Gema
{"title":"对网民仇恨言论进行舆情挖掘的机器学习","authors":"Mutiana Pratiwi, Rima Liana Gema","doi":"10.33022/ijcs.v13i1.3617","DOIUrl":null,"url":null,"abstract":"\n \n \n \n  \n  \n \n \nNetizen comments written in an online news portal through social media platforms, one of which is Instagram, can be used as material in the sentiment analysis process, which can be classified into positive, negative, or neutral sentiments. Sentiment analysis is part of the study of text mining, the science of discovering unknown knowledge by automatically extracting information from large volumes of unstructured text into useful information. The resulting information is in the form of sentiment towards a topic, whether it tends to be positive, negative, or neutral. The classification method used in this research is Support Vector Machine (SVM) and TF-IDF data weighting to classify text. Stages to perform data analysis are pre-processing to clean data, word weighting, labeling data into positive, negative, or neutral classes, and classifying and visualizing data with graphs. Accuracy tests using 70:30 split data showed that the accuracy reached 98%. Tests with 80:20 and 90:10 split data also showed high accuracy of 98% and 99%. \n \n \n \n","PeriodicalId":52855,"journal":{"name":"Indonesian Journal of Computer Science","volume":"261 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine Learning on Opinion Mining of Netizen's Hate Speech\",\"authors\":\"Mutiana Pratiwi, Rima Liana Gema\",\"doi\":\"10.33022/ijcs.v13i1.3617\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n \\n \\n \\n  \\n  \\n \\n \\nNetizen comments written in an online news portal through social media platforms, one of which is Instagram, can be used as material in the sentiment analysis process, which can be classified into positive, negative, or neutral sentiments. Sentiment analysis is part of the study of text mining, the science of discovering unknown knowledge by automatically extracting information from large volumes of unstructured text into useful information. The resulting information is in the form of sentiment towards a topic, whether it tends to be positive, negative, or neutral. The classification method used in this research is Support Vector Machine (SVM) and TF-IDF data weighting to classify text. Stages to perform data analysis are pre-processing to clean data, word weighting, labeling data into positive, negative, or neutral classes, and classifying and visualizing data with graphs. Accuracy tests using 70:30 split data showed that the accuracy reached 98%. Tests with 80:20 and 90:10 split data also showed high accuracy of 98% and 99%. \\n \\n \\n \\n\",\"PeriodicalId\":52855,\"journal\":{\"name\":\"Indonesian Journal of Computer Science\",\"volume\":\"261 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indonesian Journal of Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33022/ijcs.v13i1.3617\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indonesian Journal of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33022/ijcs.v13i1.3617","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

网民通过社交媒体平台(Instagram 就是其中之一)在在线新闻门户网站上撰写的评论可作为情感分析过程中的素材,这些评论可分为正面、负面和中性情感。情感分析是文本挖掘研究的一部分,文本挖掘是一门通过从大量非结构化文本中自动提取有用信息来发现未知知识的科学。所得到的信息是对某一主题的情感形式,即倾向于正面、负面还是中性。本研究采用的分类方法是支持向量机(SVM)和 TF-IDF 数据加权法对文本进行分类。进行数据分析的阶段包括:预处理以清理数据、单词加权、将数据标记为正面、负面或中性类别,以及用图表对数据进行分类和可视化。使用 70:30 分割数据进行的准确率测试表明,准确率达到 98%。使用 80:20 和 90:10 分割数据进行的测试也显示出 98% 和 99% 的高准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine Learning on Opinion Mining of Netizen's Hate Speech
    Netizen comments written in an online news portal through social media platforms, one of which is Instagram, can be used as material in the sentiment analysis process, which can be classified into positive, negative, or neutral sentiments. Sentiment analysis is part of the study of text mining, the science of discovering unknown knowledge by automatically extracting information from large volumes of unstructured text into useful information. The resulting information is in the form of sentiment towards a topic, whether it tends to be positive, negative, or neutral. The classification method used in this research is Support Vector Machine (SVM) and TF-IDF data weighting to classify text. Stages to perform data analysis are pre-processing to clean data, word weighting, labeling data into positive, negative, or neutral classes, and classifying and visualizing data with graphs. Accuracy tests using 70:30 split data showed that the accuracy reached 98%. Tests with 80:20 and 90:10 split data also showed high accuracy of 98% and 99%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信