{"title":"通过均匀采样提高支化聚合物模型广义罗森布鲁斯采样的收敛性","authors":"Tom Roberts, T. Prellberg","doi":"10.1088/1751-8121/ad38ec","DOIUrl":null,"url":null,"abstract":"\n Sampling with the Generalised Atmospheric Rosenbluth Method (GARM) is a technique for estimating the distributions of lattice polymer models that has had some success in the study of linear polymers and lattice polygons. In this paper we will explain how and why such sampling appears not to be effective for many models of branched polymers. Analysing the algorithm on a simple binary tree, we argue that the fundamental issue is an inherent bias towards extreme configurations that is costly to correct with reweighting techniques. We provide a solution to this by applying uniform sampling methods to the atmospheres that are central to GARM. We caution that the ensuing computational complexity often outweighs the improvements gained.","PeriodicalId":502730,"journal":{"name":"Journal of Physics A: Mathematical and Theoretical","volume":"267 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving convergence of Generalised Rosenbluth sampling for branched polymer models by uniform sampling\",\"authors\":\"Tom Roberts, T. Prellberg\",\"doi\":\"10.1088/1751-8121/ad38ec\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Sampling with the Generalised Atmospheric Rosenbluth Method (GARM) is a technique for estimating the distributions of lattice polymer models that has had some success in the study of linear polymers and lattice polygons. In this paper we will explain how and why such sampling appears not to be effective for many models of branched polymers. Analysing the algorithm on a simple binary tree, we argue that the fundamental issue is an inherent bias towards extreme configurations that is costly to correct with reweighting techniques. We provide a solution to this by applying uniform sampling methods to the atmospheres that are central to GARM. We caution that the ensuing computational complexity often outweighs the improvements gained.\",\"PeriodicalId\":502730,\"journal\":{\"name\":\"Journal of Physics A: Mathematical and Theoretical\",\"volume\":\"267 6\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics A: Mathematical and Theoretical\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1751-8121/ad38ec\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics A: Mathematical and Theoretical","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1751-8121/ad38ec","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Improving convergence of Generalised Rosenbluth sampling for branched polymer models by uniform sampling
Sampling with the Generalised Atmospheric Rosenbluth Method (GARM) is a technique for estimating the distributions of lattice polymer models that has had some success in the study of linear polymers and lattice polygons. In this paper we will explain how and why such sampling appears not to be effective for many models of branched polymers. Analysing the algorithm on a simple binary tree, we argue that the fundamental issue is an inherent bias towards extreme configurations that is costly to correct with reweighting techniques. We provide a solution to this by applying uniform sampling methods to the atmospheres that are central to GARM. We caution that the ensuing computational complexity often outweighs the improvements gained.