{"title":"动态模型的简化对六关节工业关节型机械臂运动的影响","authors":"Mehdi Fazilat, N. Zioui","doi":"10.18196/jrc.v5i1.20263","DOIUrl":null,"url":null,"abstract":"This research investigates the impact of model simplification on the dynamic performance of an ABB IRB-140 six-jointed industrial robotic arm, concentrating on torque prediction and energy consumption. The entire mathematical model of forward, reverse, differential kinematics, and dynamic model proposed based on the technical specifications of the arm, and to obtain the center of the mass and inertia matrices, which are essential components of the dynamic model, Utilizing Solidworks, we developed three CAD/CAM models representing the manipulator with varying detail levels, such as simplified, semi-detailed, and detailed. Our findings indicate minor differences in the model's torque and energy consumption graphs. The semi-detailed model consumed the most energy, except for joint 1, with the detailed model showing a 0.53% reduction and the simplified model a 6.8% reduction in energy consumption. Despite these variations, all models proved effective in predicting the robot's performance during a standard 30-second task, demonstrating their adequacy for various industrial applications. This research highlights the balance between computational efficiency and accuracy in model selection. While the detailed model offers the highest precision, it demands more computational resources, which is suitable for high-precision tasks. In discrepancy, simplified, less precise models offer computational efficiency, making them adequate for specific scenarios. Our study provides critical insights into selecting dynamic models in industrial robotics. It guides the optimization of performance and energy efficiency based on the required task precision and available computational resources. This comprehensive comparison of dynamic models underscores their applicability and effectiveness in diverse industrial settings.","PeriodicalId":443428,"journal":{"name":"Journal of Robotics and Control (JRC)","volume":"55 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Impact of Simplifications of the Dynamic Model on the Motion of a Six-Jointed Industrial Articulated Robotic Arm Movement\",\"authors\":\"Mehdi Fazilat, N. Zioui\",\"doi\":\"10.18196/jrc.v5i1.20263\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research investigates the impact of model simplification on the dynamic performance of an ABB IRB-140 six-jointed industrial robotic arm, concentrating on torque prediction and energy consumption. The entire mathematical model of forward, reverse, differential kinematics, and dynamic model proposed based on the technical specifications of the arm, and to obtain the center of the mass and inertia matrices, which are essential components of the dynamic model, Utilizing Solidworks, we developed three CAD/CAM models representing the manipulator with varying detail levels, such as simplified, semi-detailed, and detailed. Our findings indicate minor differences in the model's torque and energy consumption graphs. The semi-detailed model consumed the most energy, except for joint 1, with the detailed model showing a 0.53% reduction and the simplified model a 6.8% reduction in energy consumption. Despite these variations, all models proved effective in predicting the robot's performance during a standard 30-second task, demonstrating their adequacy for various industrial applications. This research highlights the balance between computational efficiency and accuracy in model selection. While the detailed model offers the highest precision, it demands more computational resources, which is suitable for high-precision tasks. In discrepancy, simplified, less precise models offer computational efficiency, making them adequate for specific scenarios. Our study provides critical insights into selecting dynamic models in industrial robotics. It guides the optimization of performance and energy efficiency based on the required task precision and available computational resources. This comprehensive comparison of dynamic models underscores their applicability and effectiveness in diverse industrial settings.\",\"PeriodicalId\":443428,\"journal\":{\"name\":\"Journal of Robotics and Control (JRC)\",\"volume\":\"55 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Robotics and Control (JRC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18196/jrc.v5i1.20263\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Robotics and Control (JRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18196/jrc.v5i1.20263","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Impact of Simplifications of the Dynamic Model on the Motion of a Six-Jointed Industrial Articulated Robotic Arm Movement
This research investigates the impact of model simplification on the dynamic performance of an ABB IRB-140 six-jointed industrial robotic arm, concentrating on torque prediction and energy consumption. The entire mathematical model of forward, reverse, differential kinematics, and dynamic model proposed based on the technical specifications of the arm, and to obtain the center of the mass and inertia matrices, which are essential components of the dynamic model, Utilizing Solidworks, we developed three CAD/CAM models representing the manipulator with varying detail levels, such as simplified, semi-detailed, and detailed. Our findings indicate minor differences in the model's torque and energy consumption graphs. The semi-detailed model consumed the most energy, except for joint 1, with the detailed model showing a 0.53% reduction and the simplified model a 6.8% reduction in energy consumption. Despite these variations, all models proved effective in predicting the robot's performance during a standard 30-second task, demonstrating their adequacy for various industrial applications. This research highlights the balance between computational efficiency and accuracy in model selection. While the detailed model offers the highest precision, it demands more computational resources, which is suitable for high-precision tasks. In discrepancy, simplified, less precise models offer computational efficiency, making them adequate for specific scenarios. Our study provides critical insights into selecting dynamic models in industrial robotics. It guides the optimization of performance and energy efficiency based on the required task precision and available computational resources. This comprehensive comparison of dynamic models underscores their applicability and effectiveness in diverse industrial settings.