新型 4D 超混沌系统澳门威尼斯人官网程分析与 Runge-kutta 实现

Taufik Abdullah, Aqila Aqila, Ichwanul Muslim Karo Karo
{"title":"新型 4D 超混沌系统澳门威尼斯人官网程分析与 Runge-kutta 实现","authors":"Taufik Abdullah, Aqila Aqila, Ichwanul Muslim Karo Karo","doi":"10.30872/jsakti.v5i1.11043","DOIUrl":null,"url":null,"abstract":"In general, hyperchaotic system is defined as a chaotic system with more than one positive Lyapunov exponent, this implies that its chaotic dynamics extend in several different directions simultaneously. The discovery of reliable and effective methods for solving hyperchaotic systems is carried out extensively. The aim of this research is to implement nonlinear hyperchaotic using runge-kutta. The NHS system is built by inspecting, modifying and adding one state to the MACM chaotic system. In this study, we use the same initial conditions x_0=y_0=z_0=w_0=1 and the parameters a = 2,b = 2,c = 0.5, and d = 14.5. At first we experiments modified approaches, namely Classic Runge-Kutta Method 3 Order, Runge-Kutta Method Based On Arithmetic Mean, Metode Runge-Kutta Method Based On Geometric Mean, Modified Runge-Kutta Geometric Mean Based Method-1, RKLCM Approaches Instead of RKGM using MAPLE software as a calculation tool. In this work, we observe that the Runge-Kutta Method Based on Arithmetic Mean has the smallest error value with an average variable x of 0.000606953, variable y of 0.009280181, variable z of 0.000378639 and variable w of 0.60781585. Then also in RKLCM Approaches Instead of RKGM it has the largest error value with an average variable x of 0.483789793, variable y of 0.620803849, variable z of 0.92097139, and variable w of 0.596137549.","PeriodicalId":315894,"journal":{"name":"Sains, Aplikasi, Komputasi dan Teknologi Informasi","volume":"5 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of New 4D Hyperchaotic Systems MACM and Implementation Using Runge-kutta\",\"authors\":\"Taufik Abdullah, Aqila Aqila, Ichwanul Muslim Karo Karo\",\"doi\":\"10.30872/jsakti.v5i1.11043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In general, hyperchaotic system is defined as a chaotic system with more than one positive Lyapunov exponent, this implies that its chaotic dynamics extend in several different directions simultaneously. The discovery of reliable and effective methods for solving hyperchaotic systems is carried out extensively. The aim of this research is to implement nonlinear hyperchaotic using runge-kutta. The NHS system is built by inspecting, modifying and adding one state to the MACM chaotic system. In this study, we use the same initial conditions x_0=y_0=z_0=w_0=1 and the parameters a = 2,b = 2,c = 0.5, and d = 14.5. At first we experiments modified approaches, namely Classic Runge-Kutta Method 3 Order, Runge-Kutta Method Based On Arithmetic Mean, Metode Runge-Kutta Method Based On Geometric Mean, Modified Runge-Kutta Geometric Mean Based Method-1, RKLCM Approaches Instead of RKGM using MAPLE software as a calculation tool. In this work, we observe that the Runge-Kutta Method Based on Arithmetic Mean has the smallest error value with an average variable x of 0.000606953, variable y of 0.009280181, variable z of 0.000378639 and variable w of 0.60781585. Then also in RKLCM Approaches Instead of RKGM it has the largest error value with an average variable x of 0.483789793, variable y of 0.620803849, variable z of 0.92097139, and variable w of 0.596137549.\",\"PeriodicalId\":315894,\"journal\":{\"name\":\"Sains, Aplikasi, Komputasi dan Teknologi Informasi\",\"volume\":\"5 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sains, Aplikasi, Komputasi dan Teknologi Informasi\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30872/jsakti.v5i1.11043\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sains, Aplikasi, Komputasi dan Teknologi Informasi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30872/jsakti.v5i1.11043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

一般来说,超混沌系统是指具有一个以上正 Lyapunov 指数的混沌系统,这意味着其混沌动力学同时向几个不同的方向扩展。解决超混沌系统的可靠而有效的方法已得到广泛应用。本研究的目的是利用 runge-kutta 实现非线性超混沌。NHS 系统是通过检查、修改和添加一个状态到 MACM 混沌系统而建立的。在本研究中,我们使用相同的初始条件 x_0=y_0=z_0=w_0=1,参数 a = 2、b = 2、c = 0.5 和 d = 14.5。首先,我们使用 MAPLE 软件作为计算工具,试验了一些改进方法,即经典的三阶 Runge-Kutta 法、基于算术平均值的 Runge-Kutta 法、基于几何平均值的 Metode Runge-Kutta 法、基于几何平均值的修正 Runge-Kutta 法-1、RKLCM 法,以取代 RKGM。在这项工作中,我们发现基于算术平均值的 Runge-Kutta 方法误差值最小,变量 x 的平均值为 0.000606953,变量 y 的平均值为 0.009280181,变量 z 的平均值为 0.000378639,变量 w 的平均值为 0.60781585。同样,在 RKLCM 方法(而不是 RKGM)中,平均变量 x 的误差值最大,为 0.483789793,变量 y 的误差值最大,为 0.620803849,变量 z 的误差值最大,为 0.92097139,变量 w 的误差值最大,为 0.596137549。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of New 4D Hyperchaotic Systems MACM and Implementation Using Runge-kutta
In general, hyperchaotic system is defined as a chaotic system with more than one positive Lyapunov exponent, this implies that its chaotic dynamics extend in several different directions simultaneously. The discovery of reliable and effective methods for solving hyperchaotic systems is carried out extensively. The aim of this research is to implement nonlinear hyperchaotic using runge-kutta. The NHS system is built by inspecting, modifying and adding one state to the MACM chaotic system. In this study, we use the same initial conditions x_0=y_0=z_0=w_0=1 and the parameters a = 2,b = 2,c = 0.5, and d = 14.5. At first we experiments modified approaches, namely Classic Runge-Kutta Method 3 Order, Runge-Kutta Method Based On Arithmetic Mean, Metode Runge-Kutta Method Based On Geometric Mean, Modified Runge-Kutta Geometric Mean Based Method-1, RKLCM Approaches Instead of RKGM using MAPLE software as a calculation tool. In this work, we observe that the Runge-Kutta Method Based on Arithmetic Mean has the smallest error value with an average variable x of 0.000606953, variable y of 0.009280181, variable z of 0.000378639 and variable w of 0.60781585. Then also in RKLCM Approaches Instead of RKGM it has the largest error value with an average variable x of 0.483789793, variable y of 0.620803849, variable z of 0.92097139, and variable w of 0.596137549.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信