系数无界的四阶算子

IF 1 3区 数学 Q1 MATHEMATICS
Federica Gregorio, Chiara Spina, C. Tacelli
{"title":"系数无界的四阶算子","authors":"Federica Gregorio, Chiara Spina, C. Tacelli","doi":"10.3934/cpaa.2024020","DOIUrl":null,"url":null,"abstract":"We prove that operators of the form $A=-a(x)^2\\Delta^{2}$, with $|D a(x)|\\leq c a(x)^\\frac{1}{2}$, generate analytic semigroups in $L^p(\\mathbb{R}^N)$ for $1<p\\leq\\infty$ and in $C_b(\\mathbb{R}^N)$. In particular, we deduce generation results for the operator $A :=- (1+|x|^2)^{\\alpha} \\Delta^{2}$, $0\\leq\\alpha\\leq2$. Moreover, we characterize the maximal domain of such operators in $L^p(\\mathbb{R}^N)$ for $1<p<\\infty$.","PeriodicalId":10643,"journal":{"name":"Communications on Pure and Applied Analysis","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fourth-order operators with unbounded coefficients\",\"authors\":\"Federica Gregorio, Chiara Spina, C. Tacelli\",\"doi\":\"10.3934/cpaa.2024020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that operators of the form $A=-a(x)^2\\\\Delta^{2}$, with $|D a(x)|\\\\leq c a(x)^\\\\frac{1}{2}$, generate analytic semigroups in $L^p(\\\\mathbb{R}^N)$ for $1<p\\\\leq\\\\infty$ and in $C_b(\\\\mathbb{R}^N)$. In particular, we deduce generation results for the operator $A :=- (1+|x|^2)^{\\\\alpha} \\\\Delta^{2}$, $0\\\\leq\\\\alpha\\\\leq2$. Moreover, we characterize the maximal domain of such operators in $L^p(\\\\mathbb{R}^N)$ for $1<p<\\\\infty$.\",\"PeriodicalId\":10643,\"journal\":{\"name\":\"Communications on Pure and Applied Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications on Pure and Applied Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3934/cpaa.2024020\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications on Pure and Applied Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/cpaa.2024020","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们证明,对于 1本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文 本刊更多论文
Fourth-order operators with unbounded coefficients
We prove that operators of the form $A=-a(x)^2\Delta^{2}$, with $|D a(x)|\leq c a(x)^\frac{1}{2}$, generate analytic semigroups in $L^p(\mathbb{R}^N)$ for $1
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
10.00%
发文量
124
审稿时长
4-8 weeks
期刊介绍: CPAA publishes original research papers of the highest quality in all the major areas of analysis and its applications, with a central theme on theoretical and numeric differential equations. Invited expository articles are also published from time to time. It is edited by a group of energetic leaders to guarantee the journal''s highest standard and closest link to the scientific communities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信