{"title":"利用双重情感分析通过产品评论分类识别产品方面的极性","authors":"Dr. Harsh Lohia","doi":"10.46243/jst.2024.v9.i01.pp139-147","DOIUrl":null,"url":null,"abstract":"Dual Sentiment Analysis has emerged as a crucial and active research field. It involves extracting sentiment from comments, feedback, or critiques, which serves as valuable indicators for various purposes. To address this, we propose a novel dual training algorithm that utilizes both original and reversed training reviews to develop a robust sentiment classifier. Additionally, we introduce a dual prediction algorithm that comprehensively assesses both aspects of a review for classification during testing. The proposed approach goes beyond traditional polarity (positive-negative) classification by extending the framework to a 3-class system, which includes neutral reviews. This enhancement allows for a more nuanced understanding of sentiment. By considering neutral reviews, we gain deeper insights into the sentiment landscape. Dual Sentiment Analysis plays a pivotal role in helping companies gauge the level of acceptance of their products and formulate strategies to improve product quality. Moreover, it empowers policymakers and politicians to gain","PeriodicalId":17073,"journal":{"name":"Journal of Science and Technology","volume":"74 8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identifying Product Aspect Polarity by Product Review Classification with Dual Sentiment Analysis\",\"authors\":\"Dr. Harsh Lohia\",\"doi\":\"10.46243/jst.2024.v9.i01.pp139-147\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dual Sentiment Analysis has emerged as a crucial and active research field. It involves extracting sentiment from comments, feedback, or critiques, which serves as valuable indicators for various purposes. To address this, we propose a novel dual training algorithm that utilizes both original and reversed training reviews to develop a robust sentiment classifier. Additionally, we introduce a dual prediction algorithm that comprehensively assesses both aspects of a review for classification during testing. The proposed approach goes beyond traditional polarity (positive-negative) classification by extending the framework to a 3-class system, which includes neutral reviews. This enhancement allows for a more nuanced understanding of sentiment. By considering neutral reviews, we gain deeper insights into the sentiment landscape. Dual Sentiment Analysis plays a pivotal role in helping companies gauge the level of acceptance of their products and formulate strategies to improve product quality. Moreover, it empowers policymakers and politicians to gain\",\"PeriodicalId\":17073,\"journal\":{\"name\":\"Journal of Science and Technology\",\"volume\":\"74 8\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46243/jst.2024.v9.i01.pp139-147\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46243/jst.2024.v9.i01.pp139-147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Identifying Product Aspect Polarity by Product Review Classification with Dual Sentiment Analysis
Dual Sentiment Analysis has emerged as a crucial and active research field. It involves extracting sentiment from comments, feedback, or critiques, which serves as valuable indicators for various purposes. To address this, we propose a novel dual training algorithm that utilizes both original and reversed training reviews to develop a robust sentiment classifier. Additionally, we introduce a dual prediction algorithm that comprehensively assesses both aspects of a review for classification during testing. The proposed approach goes beyond traditional polarity (positive-negative) classification by extending the framework to a 3-class system, which includes neutral reviews. This enhancement allows for a more nuanced understanding of sentiment. By considering neutral reviews, we gain deeper insights into the sentiment landscape. Dual Sentiment Analysis plays a pivotal role in helping companies gauge the level of acceptance of their products and formulate strategies to improve product quality. Moreover, it empowers policymakers and politicians to gain