改善 Li7La3Zr2O12 锂离子传导性的效应温度

Agnes Lakshmanan, Sabarinathan Venkatachalam
{"title":"改善 Li7La3Zr2O12 锂离子传导性的效应温度","authors":"Agnes Lakshmanan, Sabarinathan Venkatachalam","doi":"10.54392/irjmt2417","DOIUrl":null,"url":null,"abstract":"This study investigates the dissociation behavior of water-soluble salts of Li and La and the unique behavior of Zr sources, resulting in the generation of Li+, La3+, and Zr4+ ions in aqueous solutions. The specific conductivity of calcined SG1 and SG2 displays temperature-dependent variations, with SG1 consistently exhibiting higher conductivity (2.08 x 10-4 S/cm) across the temperature range. The closed-packed structure facilitates the controllable mass transfer of lithium, enhancing ionic conductivity. The constructed LiFePO4/LLZO/AC device using these electrolytes demonstrates an impressive energy density of 1.95 Wh/kg and a power density of 144.92 W/kg, showcasing an excellent solid electrode-electrolyte interphase. Over 10,000 cycles, cyclic stability, with an average performance of 86%, underscores the potential of LLZO as a solid electrolyte for advanced energy storage devices. The sol-gel synthesis and densification strategy is a simple and effective method for obtaining lithium-rich LLZO electrolytes. The enhanced ionic conductivity and electrochemical performance of the solid-state device emphasize the practical viability of this approach, contributing to the sustainable development of advanced energy storage technologies.","PeriodicalId":14412,"journal":{"name":"International Research Journal of Multidisciplinary Technovation","volume":"53 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect Temperature for improving the Li-ion conductivity of Li7La3Zr2O12\",\"authors\":\"Agnes Lakshmanan, Sabarinathan Venkatachalam\",\"doi\":\"10.54392/irjmt2417\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study investigates the dissociation behavior of water-soluble salts of Li and La and the unique behavior of Zr sources, resulting in the generation of Li+, La3+, and Zr4+ ions in aqueous solutions. The specific conductivity of calcined SG1 and SG2 displays temperature-dependent variations, with SG1 consistently exhibiting higher conductivity (2.08 x 10-4 S/cm) across the temperature range. The closed-packed structure facilitates the controllable mass transfer of lithium, enhancing ionic conductivity. The constructed LiFePO4/LLZO/AC device using these electrolytes demonstrates an impressive energy density of 1.95 Wh/kg and a power density of 144.92 W/kg, showcasing an excellent solid electrode-electrolyte interphase. Over 10,000 cycles, cyclic stability, with an average performance of 86%, underscores the potential of LLZO as a solid electrolyte for advanced energy storage devices. The sol-gel synthesis and densification strategy is a simple and effective method for obtaining lithium-rich LLZO electrolytes. The enhanced ionic conductivity and electrochemical performance of the solid-state device emphasize the practical viability of this approach, contributing to the sustainable development of advanced energy storage technologies.\",\"PeriodicalId\":14412,\"journal\":{\"name\":\"International Research Journal of Multidisciplinary Technovation\",\"volume\":\"53 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Research Journal of Multidisciplinary Technovation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54392/irjmt2417\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Research Journal of Multidisciplinary Technovation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54392/irjmt2417","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究调查了 Li 和 La 的水溶性盐的解离行为以及 Zr 源的独特行为,结果发现在水溶液中生成了 Li+、La3+ 和 Zr4+ 离子。煅烧 SG1 和 SG2 的比电导率随温度而变化,SG1 在整个温度范围内始终表现出较高的电导率(2.08 x 10-4 S/cm)。封闭式封装结构有利于锂的可控传质,从而提高了离子导电性。使用这些电解质构建的 LiFePO4/LLZO/AC 器件的能量密度高达 1.95 Wh/kg,功率密度为 144.92 W/kg,展示了出色的固体电极-电解质间相。循环稳定性超过 10,000 次,平均性能达到 86%,这凸显了 LLZO 作为固体电解质用于先进储能设备的潜力。溶胶-凝胶合成和致密化策略是获得富锂 LLZO 电解质的一种简单而有效的方法。固态器件离子电导率和电化学性能的提高强调了这种方法的实际可行性,有助于先进储能技术的可持续发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effect Temperature for improving the Li-ion conductivity of Li7La3Zr2O12
This study investigates the dissociation behavior of water-soluble salts of Li and La and the unique behavior of Zr sources, resulting in the generation of Li+, La3+, and Zr4+ ions in aqueous solutions. The specific conductivity of calcined SG1 and SG2 displays temperature-dependent variations, with SG1 consistently exhibiting higher conductivity (2.08 x 10-4 S/cm) across the temperature range. The closed-packed structure facilitates the controllable mass transfer of lithium, enhancing ionic conductivity. The constructed LiFePO4/LLZO/AC device using these electrolytes demonstrates an impressive energy density of 1.95 Wh/kg and a power density of 144.92 W/kg, showcasing an excellent solid electrode-electrolyte interphase. Over 10,000 cycles, cyclic stability, with an average performance of 86%, underscores the potential of LLZO as a solid electrolyte for advanced energy storage devices. The sol-gel synthesis and densification strategy is a simple and effective method for obtaining lithium-rich LLZO electrolytes. The enhanced ionic conductivity and electrochemical performance of the solid-state device emphasize the practical viability of this approach, contributing to the sustainable development of advanced energy storage technologies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信