{"title":"应用于农业的数据挖掘技术:最新技术和文献计量分析。","authors":"Ana Cristina Umaquinga Criollo","doi":"10.53358/ideas.v6i1.944","DOIUrl":null,"url":null,"abstract":"En esta investigación, se presenta un análisis bibliométrico de 106 artículos de revistas y estado del arte indexados en Scopus, junto con un análisis sistemático de 83 artículos seleccionados. Se identifican áreas de estudio que incluye la predicción de rendimiento y crecimiento de cultivos, la detección de enfermedades en plantas, análisis de agua y suelo, relacionados con diferentes tipos de cultivo como: cereales (arroz, cebada, maíz, trigo, soya); frutas (manzana, pepino); legumbres (alfalfa, frejol, cacahuate); tubérculos, entre otros. Se examinan variables climáticas, suelo, agua, condiciones topográficas, edafológicas y técnicas de minería de datos como, Redes Neuronales, Deep Learning, segmentación, reglas de asociación y clasificación, entre otras, para optimizar el uso de recursos y tomar decisiones agrícolas basadas en datos. Además, se destacan los desafíos y oportunidades en esta área de investigación, así como las perspectivas futuras para el desarrollo de soluciones de minería de datos avanzadas en el contexto agrícola. Este análisis contribuye a una mejor comprensión de cómo la minería de datos está transformando el sector agrícola, comunidad académica y científica, con el fin de impulsar la eficiencia, la sostenibilidad y la toma de decisiones informadas en la producción de alimentos.","PeriodicalId":137291,"journal":{"name":"INNOVATION & DEVELOPMENT IN ENGINEERING AND APPLIED SCIENCES","volume":"70 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Técnicas de Minería de datos aplicados a la agricultura: Estado del Arte y análisis bibliométrico\",\"authors\":\"Ana Cristina Umaquinga Criollo\",\"doi\":\"10.53358/ideas.v6i1.944\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"En esta investigación, se presenta un análisis bibliométrico de 106 artículos de revistas y estado del arte indexados en Scopus, junto con un análisis sistemático de 83 artículos seleccionados. Se identifican áreas de estudio que incluye la predicción de rendimiento y crecimiento de cultivos, la detección de enfermedades en plantas, análisis de agua y suelo, relacionados con diferentes tipos de cultivo como: cereales (arroz, cebada, maíz, trigo, soya); frutas (manzana, pepino); legumbres (alfalfa, frejol, cacahuate); tubérculos, entre otros. Se examinan variables climáticas, suelo, agua, condiciones topográficas, edafológicas y técnicas de minería de datos como, Redes Neuronales, Deep Learning, segmentación, reglas de asociación y clasificación, entre otras, para optimizar el uso de recursos y tomar decisiones agrícolas basadas en datos. Además, se destacan los desafíos y oportunidades en esta área de investigación, así como las perspectivas futuras para el desarrollo de soluciones de minería de datos avanzadas en el contexto agrícola. Este análisis contribuye a una mejor comprensión de cómo la minería de datos está transformando el sector agrícola, comunidad académica y científica, con el fin de impulsar la eficiencia, la sostenibilidad y la toma de decisiones informadas en la producción de alimentos.\",\"PeriodicalId\":137291,\"journal\":{\"name\":\"INNOVATION & DEVELOPMENT IN ENGINEERING AND APPLIED SCIENCES\",\"volume\":\"70 5\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"INNOVATION & DEVELOPMENT IN ENGINEERING AND APPLIED SCIENCES\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.53358/ideas.v6i1.944\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"INNOVATION & DEVELOPMENT IN ENGINEERING AND APPLIED SCIENCES","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53358/ideas.v6i1.944","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Técnicas de Minería de datos aplicados a la agricultura: Estado del Arte y análisis bibliométrico
En esta investigación, se presenta un análisis bibliométrico de 106 artículos de revistas y estado del arte indexados en Scopus, junto con un análisis sistemático de 83 artículos seleccionados. Se identifican áreas de estudio que incluye la predicción de rendimiento y crecimiento de cultivos, la detección de enfermedades en plantas, análisis de agua y suelo, relacionados con diferentes tipos de cultivo como: cereales (arroz, cebada, maíz, trigo, soya); frutas (manzana, pepino); legumbres (alfalfa, frejol, cacahuate); tubérculos, entre otros. Se examinan variables climáticas, suelo, agua, condiciones topográficas, edafológicas y técnicas de minería de datos como, Redes Neuronales, Deep Learning, segmentación, reglas de asociación y clasificación, entre otras, para optimizar el uso de recursos y tomar decisiones agrícolas basadas en datos. Además, se destacan los desafíos y oportunidades en esta área de investigación, así como las perspectivas futuras para el desarrollo de soluciones de minería de datos avanzadas en el contexto agrícola. Este análisis contribuye a una mejor comprensión de cómo la minería de datos está transformando el sector agrícola, comunidad académica y científica, con el fin de impulsar la eficiencia, la sostenibilidad y la toma de decisiones informadas en la producción de alimentos.