利用声音特征分析进行基于机器学习的心脏杂音检测和分类新方法

Ram Sivaraman, Joe Xiao
{"title":"利用声音特征分析进行基于机器学习的心脏杂音检测和分类新方法","authors":"Ram Sivaraman, Joe Xiao","doi":"10.5121/csit.2024.140206","DOIUrl":null,"url":null,"abstract":"An electrocardiogram (ECG) is a common method used for diagnosis of heart diseases. ECG is not sufficient to detect heart abnormalities early. Heart sound monitoring or phonocardiogram (PCG) is a non-invasive assessment that can be performed during routine exams. PCG can provide valuable details for both heart disorder diagnosis as well as any perioperative cardiac monitoring. Further, heart murmurs are abnormal signals generated by turbulent blood flow in the heart and are closely associated with specific heart diseases. This paper presents a new machine learning-based heart sounds evaluation for murmurs with high accuracy. A random forest classifier is built using the statistical moments of the coefficients extracted from the heart sounds. The classifier can predict the location of the heart sounds with over 90% accuracy. The random forest classifier has a murmur detection accuracy of over 70% for test dataset and detects with over 98% accuracy for the full dataset.","PeriodicalId":104179,"journal":{"name":"AI, Machine Learning and Applications","volume":"55 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel Machine Learning-Based Heart Murmur Detection and Classification using Sound Feature Analysis\",\"authors\":\"Ram Sivaraman, Joe Xiao\",\"doi\":\"10.5121/csit.2024.140206\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An electrocardiogram (ECG) is a common method used for diagnosis of heart diseases. ECG is not sufficient to detect heart abnormalities early. Heart sound monitoring or phonocardiogram (PCG) is a non-invasive assessment that can be performed during routine exams. PCG can provide valuable details for both heart disorder diagnosis as well as any perioperative cardiac monitoring. Further, heart murmurs are abnormal signals generated by turbulent blood flow in the heart and are closely associated with specific heart diseases. This paper presents a new machine learning-based heart sounds evaluation for murmurs with high accuracy. A random forest classifier is built using the statistical moments of the coefficients extracted from the heart sounds. The classifier can predict the location of the heart sounds with over 90% accuracy. The random forest classifier has a murmur detection accuracy of over 70% for test dataset and detects with over 98% accuracy for the full dataset.\",\"PeriodicalId\":104179,\"journal\":{\"name\":\"AI, Machine Learning and Applications\",\"volume\":\"55 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AI, Machine Learning and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5121/csit.2024.140206\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AI, Machine Learning and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/csit.2024.140206","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

心电图(ECG)是诊断心脏疾病的常用方法。心电图不足以早期发现心脏异常。心音监测或心音图(PCG)是一种非侵入性评估,可在常规检查中进行。PCG 可为心脏疾病诊断和任何围手术期心脏监测提供有价值的细节。此外,心脏杂音是由心脏内紊乱的血流产生的异常信号,与特定的心脏疾病密切相关。本文提出了一种新的基于机器学习的心脏杂音评估方法,具有很高的准确性。本文利用从心音中提取的系数的统计矩建立了一个随机森林分类器。该分类器预测心音位置的准确率超过 90%。随机森林分类器对测试数据集的杂音检测准确率超过 70%,对全部数据集的检测准确率超过 98%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Novel Machine Learning-Based Heart Murmur Detection and Classification using Sound Feature Analysis
An electrocardiogram (ECG) is a common method used for diagnosis of heart diseases. ECG is not sufficient to detect heart abnormalities early. Heart sound monitoring or phonocardiogram (PCG) is a non-invasive assessment that can be performed during routine exams. PCG can provide valuable details for both heart disorder diagnosis as well as any perioperative cardiac monitoring. Further, heart murmurs are abnormal signals generated by turbulent blood flow in the heart and are closely associated with specific heart diseases. This paper presents a new machine learning-based heart sounds evaluation for murmurs with high accuracy. A random forest classifier is built using the statistical moments of the coefficients extracted from the heart sounds. The classifier can predict the location of the heart sounds with over 90% accuracy. The random forest classifier has a murmur detection accuracy of over 70% for test dataset and detects with over 98% accuracy for the full dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信