综合情感分析:利用音频、视觉和文本数据

Jason S. Chu, Sindhu Ghanta
{"title":"综合情感分析:利用音频、视觉和文本数据","authors":"Jason S. Chu, Sindhu Ghanta","doi":"10.5121/csit.2024.140211","DOIUrl":null,"url":null,"abstract":"Exploring the area of multimodal sentiment analysis, this paper addresses the growing significance of this field, driven by the exponential rise in multimodal data across platforms like YouTube. Traditional sentiment analysis, primarily focused on textual data, often overlooks the complexities and nuances of human emotions conveyed through audio and visual cues. Addressing this gap, our study explores a comprehensive approach that integrates data from text, audio, and images, applying state-of-the-art machine learning and deep learning techniques tailored to each modality. Our methodology is tested on the CMU-MOSEI dataset, a multimodal collection from YouTube, offering a diverse range of human sentiments. Our research highlights the limitations of conventional text-based sentiment analysis, especially in the context of the intricate expressions of sentiment that multimodal data encapsulates. By fusing audio and visual information with textual analysis, we aim to capture a more complete spectrum of human emotions. Our experimental results demonstrate notable improvements in precision, recall and accuracy for emotion prediction, validating the efficacy of our multimodal approach over single-modality methods. This study not only contributes to the ongoing advancements in sentiment analysis but also underscores the potential of multimodal approaches in providing more accurate and nuanced interpretations of human emotions.","PeriodicalId":104179,"journal":{"name":"AI, Machine Learning and Applications","volume":"97 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrative Sentiment Analysis: Leveraging Audio, Visual, and Textual Data\",\"authors\":\"Jason S. Chu, Sindhu Ghanta\",\"doi\":\"10.5121/csit.2024.140211\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Exploring the area of multimodal sentiment analysis, this paper addresses the growing significance of this field, driven by the exponential rise in multimodal data across platforms like YouTube. Traditional sentiment analysis, primarily focused on textual data, often overlooks the complexities and nuances of human emotions conveyed through audio and visual cues. Addressing this gap, our study explores a comprehensive approach that integrates data from text, audio, and images, applying state-of-the-art machine learning and deep learning techniques tailored to each modality. Our methodology is tested on the CMU-MOSEI dataset, a multimodal collection from YouTube, offering a diverse range of human sentiments. Our research highlights the limitations of conventional text-based sentiment analysis, especially in the context of the intricate expressions of sentiment that multimodal data encapsulates. By fusing audio and visual information with textual analysis, we aim to capture a more complete spectrum of human emotions. Our experimental results demonstrate notable improvements in precision, recall and accuracy for emotion prediction, validating the efficacy of our multimodal approach over single-modality methods. This study not only contributes to the ongoing advancements in sentiment analysis but also underscores the potential of multimodal approaches in providing more accurate and nuanced interpretations of human emotions.\",\"PeriodicalId\":104179,\"journal\":{\"name\":\"AI, Machine Learning and Applications\",\"volume\":\"97 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AI, Machine Learning and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5121/csit.2024.140211\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AI, Machine Learning and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/csit.2024.140211","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着 YouTube 等平台上的多模态数据呈指数级增长,多模态情感分析领域的重要性日益凸显。传统的情感分析主要侧重于文本数据,往往忽略了通过音频和视觉线索传达的人类情感的复杂性和细微差别。为了弥补这一不足,我们的研究探索了一种综合方法,该方法整合了文本、音频和图像数据,并针对每种模式应用了最先进的机器学习和深度学习技术。我们的方法在 CMU-MOSEI 数据集上进行了测试,该数据集是来自 YouTube 的多模态集合,提供了各种人类情感。我们的研究凸显了传统基于文本的情感分析的局限性,尤其是在多模态数据所包含的错综复杂的情感表达背景下。通过将音频和视频信息与文本分析相结合,我们旨在捕捉更全面的人类情感。我们的实验结果表明,情感预测的精确度、召回率和准确率都有显著提高,这验证了我们的多模态方法比单模态方法更有效。这项研究不仅推动了情感分析领域的不断进步,还凸显了多模态方法在提供更准确、更细致的人类情感解读方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integrative Sentiment Analysis: Leveraging Audio, Visual, and Textual Data
Exploring the area of multimodal sentiment analysis, this paper addresses the growing significance of this field, driven by the exponential rise in multimodal data across platforms like YouTube. Traditional sentiment analysis, primarily focused on textual data, often overlooks the complexities and nuances of human emotions conveyed through audio and visual cues. Addressing this gap, our study explores a comprehensive approach that integrates data from text, audio, and images, applying state-of-the-art machine learning and deep learning techniques tailored to each modality. Our methodology is tested on the CMU-MOSEI dataset, a multimodal collection from YouTube, offering a diverse range of human sentiments. Our research highlights the limitations of conventional text-based sentiment analysis, especially in the context of the intricate expressions of sentiment that multimodal data encapsulates. By fusing audio and visual information with textual analysis, we aim to capture a more complete spectrum of human emotions. Our experimental results demonstrate notable improvements in precision, recall and accuracy for emotion prediction, validating the efficacy of our multimodal approach over single-modality methods. This study not only contributes to the ongoing advancements in sentiment analysis but also underscores the potential of multimodal approaches in providing more accurate and nuanced interpretations of human emotions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信