企业财务应收账款管理的智能优化模型

Yunxiang Peng, Guixian Tian
{"title":"企业财务应收账款管理的智能优化模型","authors":"Yunxiang Peng, Guixian Tian","doi":"10.1155/2024/4961081","DOIUrl":null,"url":null,"abstract":"As a key component of enterprise assets, accounts receivable play an important role in enterprise financial management and determine the long-term development of enterprises in the later period. In order to minimize the financial risk brought by the credit sales of enterprises, this subject studies the intelligent optimization of enterprise financial account receivable management. BP neural network and K-means clustering algorithm are used to evaluate the risk of account receivable and the owner’s credit, respectively. The account balance accounts for 45.20% of the total amount, and the risk rating of accounts receivable is 4. The training result of BP neural network algorithm has high accuracy. With K-means clustering algorithm, accurate evaluation of owner’s credit can be achieved, which can provide reference for optimization of enterprise account receivable management mode.","PeriodicalId":14766,"journal":{"name":"J. Appl. Math.","volume":"101 3","pages":"4961081:1-4961081:9"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intelligent Optimization Model of Enterprise Financial Account Receivable Management\",\"authors\":\"Yunxiang Peng, Guixian Tian\",\"doi\":\"10.1155/2024/4961081\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As a key component of enterprise assets, accounts receivable play an important role in enterprise financial management and determine the long-term development of enterprises in the later period. In order to minimize the financial risk brought by the credit sales of enterprises, this subject studies the intelligent optimization of enterprise financial account receivable management. BP neural network and K-means clustering algorithm are used to evaluate the risk of account receivable and the owner’s credit, respectively. The account balance accounts for 45.20% of the total amount, and the risk rating of accounts receivable is 4. The training result of BP neural network algorithm has high accuracy. With K-means clustering algorithm, accurate evaluation of owner’s credit can be achieved, which can provide reference for optimization of enterprise account receivable management mode.\",\"PeriodicalId\":14766,\"journal\":{\"name\":\"J. Appl. Math.\",\"volume\":\"101 3\",\"pages\":\"4961081:1-4961081:9\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Appl. Math.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2024/4961081\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Appl. Math.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2024/4961081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

应收账款作为企业资产的重要组成部分,在企业财务管理中发挥着重要作用,决定着企业后期的长远发展。为了最大限度地降低企业赊销带来的财务风险,本课题研究了企业财务应收账款管理的智能优化。分别采用BP神经网络和K-means聚类算法对应收账款和业主信用进行风险评估。应收账款余额占总金额的 45.20%,应收账款风险等级为 4,BP 神经网络算法的训练结果准确率较高。通过 K-means 聚类算法,可以实现对所有者信用的准确评价,为优化企业应收账款管理模式提供参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Intelligent Optimization Model of Enterprise Financial Account Receivable Management
As a key component of enterprise assets, accounts receivable play an important role in enterprise financial management and determine the long-term development of enterprises in the later period. In order to minimize the financial risk brought by the credit sales of enterprises, this subject studies the intelligent optimization of enterprise financial account receivable management. BP neural network and K-means clustering algorithm are used to evaluate the risk of account receivable and the owner’s credit, respectively. The account balance accounts for 45.20% of the total amount, and the risk rating of accounts receivable is 4. The training result of BP neural network algorithm has high accuracy. With K-means clustering algorithm, accurate evaluation of owner’s credit can be achieved, which can provide reference for optimization of enterprise account receivable management mode.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信