COVERT:通过定制 BERT 提高 COVID-19 X 数据的情感分析准确性

Vanshaj Gupta, Jaydeep Patel, Safa Shubbar, Kambiz Ghazinour
{"title":"COVERT:通过定制 BERT 提高 COVID-19 X 数据的情感分析准确性","authors":"Vanshaj Gupta, Jaydeep Patel, Safa Shubbar, Kambiz Ghazinour","doi":"10.5121/csit.2024.140212","DOIUrl":null,"url":null,"abstract":"In a time when social media information is a valuable resource for gaining insights, the COVID-19 pandemic has released a flood of public sentiment, abundant with unstructured text data. This paper introduces CovBERT, a novel adaptation of the BERT model, specifically honed for the nuanced analysis of COVID-19-related discourse on X (formerly Twitter). CovBERT stands out by incorporating a bespoke vocabulary, meticulously curated from pandemic-centric tweets, resulting in a remarkable leap in sentiment analysis accuracy—from the baseline 72\\% to an impressive 78.64\\%. This paper not only presents a detailed comparison of CovBERT with the standard BERT model but also juxtaposes it against traditional machine learning approaches, showcasing its superior proficiency in decoding complex emotional undercurrents in social media data. Furthermore, the integration of geolocation analysis pipeline adds another layer of depth, offering a panoramic view of global sentiment trends.","PeriodicalId":104179,"journal":{"name":"AI, Machine Learning and Applications","volume":"3 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"COVBERT: Enhancing Sentiment Analysis Accuracy in COVID-19 X Data through Customized BERT\",\"authors\":\"Vanshaj Gupta, Jaydeep Patel, Safa Shubbar, Kambiz Ghazinour\",\"doi\":\"10.5121/csit.2024.140212\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In a time when social media information is a valuable resource for gaining insights, the COVID-19 pandemic has released a flood of public sentiment, abundant with unstructured text data. This paper introduces CovBERT, a novel adaptation of the BERT model, specifically honed for the nuanced analysis of COVID-19-related discourse on X (formerly Twitter). CovBERT stands out by incorporating a bespoke vocabulary, meticulously curated from pandemic-centric tweets, resulting in a remarkable leap in sentiment analysis accuracy—from the baseline 72\\\\% to an impressive 78.64\\\\%. This paper not only presents a detailed comparison of CovBERT with the standard BERT model but also juxtaposes it against traditional machine learning approaches, showcasing its superior proficiency in decoding complex emotional undercurrents in social media data. Furthermore, the integration of geolocation analysis pipeline adds another layer of depth, offering a panoramic view of global sentiment trends.\",\"PeriodicalId\":104179,\"journal\":{\"name\":\"AI, Machine Learning and Applications\",\"volume\":\"3 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AI, Machine Learning and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5121/csit.2024.140212\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AI, Machine Learning and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/csit.2024.140212","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在社交媒体信息成为获取洞察力的宝贵资源的时代,COVID-19 大流行释放出大量非结构化文本数据的公众情绪。本文介绍了 CovBERT,它是 BERT 模型的一种新颖改良,专门用于对 X(原 Twitter)上与 COVID-19 相关的言论进行细致入微的分析。CovBERT 通过从以流行病为中心的推文中精心筛选出的定制词汇而脱颖而出,从而在情感分析准确率方面实现了显著飞跃--从基线的 72% 提高到了令人印象深刻的 78.64%。本文不仅对 CovBERT 与标准 BERT 模型进行了详细比较,还将其与传统机器学习方法进行了对比,展示了 CovBERT 在解码社交媒体数据中复杂情绪暗流方面的卓越能力。此外,地理位置分析管道的整合增加了另一层深度,提供了全球情感趋势的全景视图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
COVBERT: Enhancing Sentiment Analysis Accuracy in COVID-19 X Data through Customized BERT
In a time when social media information is a valuable resource for gaining insights, the COVID-19 pandemic has released a flood of public sentiment, abundant with unstructured text data. This paper introduces CovBERT, a novel adaptation of the BERT model, specifically honed for the nuanced analysis of COVID-19-related discourse on X (formerly Twitter). CovBERT stands out by incorporating a bespoke vocabulary, meticulously curated from pandemic-centric tweets, resulting in a remarkable leap in sentiment analysis accuracy—from the baseline 72\% to an impressive 78.64\%. This paper not only presents a detailed comparison of CovBERT with the standard BERT model but also juxtaposes it against traditional machine learning approaches, showcasing its superior proficiency in decoding complex emotional undercurrents in social media data. Furthermore, the integration of geolocation analysis pipeline adds another layer of depth, offering a panoramic view of global sentiment trends.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信