具有临界增长的分数基尔霍夫型方程的基态解

Pub Date : 2024-01-29 DOI:10.58997/ejde.2024.10
Kexue Li
{"title":"具有临界增长的分数基尔霍夫型方程的基态解","authors":"Kexue Li","doi":"10.58997/ejde.2024.10","DOIUrl":null,"url":null,"abstract":"We study the nonlinear fractional Kirchhoff problem $$ \\Big(a+b\\int_{\\mathbb{R}^3}|(-\\Delta)^{s/2}u|^2dx\\Big) (-\\Delta)^su+u=f(x,u)+|u|^{2_s^{\\ast}-2}u \\quad \\text{in }\\mathbb{R}^3, $$ $$ u\\in H^s(\\mathbb{R}^3), $$ where \\(a,b>0\\) are constants, \\(s(3/4,1)\\), \\(2_s^{\\ast}=6/(3-2s)\\), \\((-\\Delta)^s\\) is the fractional Laplacian. Under some relaxed assumptions on \\(f\\), we prove the existence of ground state solutions. \nFor more inofrmation see https://ejde.math.txstate.edu/Volumes/2024/10/abstr.html","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ground state solutions for fractional Kirchhoff type equations with critical growth\",\"authors\":\"Kexue Li\",\"doi\":\"10.58997/ejde.2024.10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the nonlinear fractional Kirchhoff problem $$ \\\\Big(a+b\\\\int_{\\\\mathbb{R}^3}|(-\\\\Delta)^{s/2}u|^2dx\\\\Big) (-\\\\Delta)^su+u=f(x,u)+|u|^{2_s^{\\\\ast}-2}u \\\\quad \\\\text{in }\\\\mathbb{R}^3, $$ $$ u\\\\in H^s(\\\\mathbb{R}^3), $$ where \\\\(a,b>0\\\\) are constants, \\\\(s(3/4,1)\\\\), \\\\(2_s^{\\\\ast}=6/(3-2s)\\\\), \\\\((-\\\\Delta)^s\\\\) is the fractional Laplacian. Under some relaxed assumptions on \\\\(f\\\\), we prove the existence of ground state solutions. \\nFor more inofrmation see https://ejde.math.txstate.edu/Volumes/2024/10/abstr.html\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.58997/ejde.2024.10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.58997/ejde.2024.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了非线性分数基尔霍夫问题 $$\Big(a+b\int_\mathbb{R}^3}|(-\Delta)^{s/2}u|^2dx\Big) (-\Delta)^su+u=f(x,u)+|u|^{2_s^{ast}-2}u \quad \text{in }\mathbb{R}^3、$$$ u\in H^s(\mathbb{R}^3), $$ 其中\(a,b>0\)是常数,\(s(3/4,1)\),\(2_s^{ast}=6/(3-2s)\),\((-\Delta)^s\)是分数拉普拉奇。在对\(f\)的一些宽松假设下,我们证明了基态解的存在。更多信息请参见 https://ejde.math.txstate.edu/Volumes/2024/10/abstr.html。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Ground state solutions for fractional Kirchhoff type equations with critical growth
We study the nonlinear fractional Kirchhoff problem $$ \Big(a+b\int_{\mathbb{R}^3}|(-\Delta)^{s/2}u|^2dx\Big) (-\Delta)^su+u=f(x,u)+|u|^{2_s^{\ast}-2}u \quad \text{in }\mathbb{R}^3, $$ $$ u\in H^s(\mathbb{R}^3), $$ where \(a,b>0\) are constants, \(s(3/4,1)\), \(2_s^{\ast}=6/(3-2s)\), \((-\Delta)^s\) is the fractional Laplacian. Under some relaxed assumptions on \(f\), we prove the existence of ground state solutions. For more inofrmation see https://ejde.math.txstate.edu/Volumes/2024/10/abstr.html
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信