{"title":"具有临界增长的分数基尔霍夫型方程的基态解","authors":"Kexue Li","doi":"10.58997/ejde.2024.10","DOIUrl":null,"url":null,"abstract":"We study the nonlinear fractional Kirchhoff problem $$ \\Big(a+b\\int_{\\mathbb{R}^3}|(-\\Delta)^{s/2}u|^2dx\\Big) (-\\Delta)^su+u=f(x,u)+|u|^{2_s^{\\ast}-2}u \\quad \\text{in }\\mathbb{R}^3, $$ $$ u\\in H^s(\\mathbb{R}^3), $$ where \\(a,b>0\\) are constants, \\(s(3/4,1)\\), \\(2_s^{\\ast}=6/(3-2s)\\), \\((-\\Delta)^s\\) is the fractional Laplacian. Under some relaxed assumptions on \\(f\\), we prove the existence of ground state solutions. \nFor more inofrmation see https://ejde.math.txstate.edu/Volumes/2024/10/abstr.html","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ground state solutions for fractional Kirchhoff type equations with critical growth\",\"authors\":\"Kexue Li\",\"doi\":\"10.58997/ejde.2024.10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the nonlinear fractional Kirchhoff problem $$ \\\\Big(a+b\\\\int_{\\\\mathbb{R}^3}|(-\\\\Delta)^{s/2}u|^2dx\\\\Big) (-\\\\Delta)^su+u=f(x,u)+|u|^{2_s^{\\\\ast}-2}u \\\\quad \\\\text{in }\\\\mathbb{R}^3, $$ $$ u\\\\in H^s(\\\\mathbb{R}^3), $$ where \\\\(a,b>0\\\\) are constants, \\\\(s(3/4,1)\\\\), \\\\(2_s^{\\\\ast}=6/(3-2s)\\\\), \\\\((-\\\\Delta)^s\\\\) is the fractional Laplacian. Under some relaxed assumptions on \\\\(f\\\\), we prove the existence of ground state solutions. \\nFor more inofrmation see https://ejde.math.txstate.edu/Volumes/2024/10/abstr.html\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.58997/ejde.2024.10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.58997/ejde.2024.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Ground state solutions for fractional Kirchhoff type equations with critical growth
We study the nonlinear fractional Kirchhoff problem $$ \Big(a+b\int_{\mathbb{R}^3}|(-\Delta)^{s/2}u|^2dx\Big) (-\Delta)^su+u=f(x,u)+|u|^{2_s^{\ast}-2}u \quad \text{in }\mathbb{R}^3, $$ $$ u\in H^s(\mathbb{R}^3), $$ where \(a,b>0\) are constants, \(s(3/4,1)\), \(2_s^{\ast}=6/(3-2s)\), \((-\Delta)^s\) is the fractional Laplacian. Under some relaxed assumptions on \(f\), we prove the existence of ground state solutions.
For more inofrmation see https://ejde.math.txstate.edu/Volumes/2024/10/abstr.html