FakeClaim:用于识别 2023 年以色列-哈马斯战争假新闻的多平台驱动数据集

Gautam Kishore Shahi, Amit Kumar Jaiswal, Thomas Mandl
{"title":"FakeClaim:用于识别 2023 年以色列-哈马斯战争假新闻的多平台驱动数据集","authors":"Gautam Kishore Shahi, Amit Kumar Jaiswal, Thomas Mandl","doi":"10.48550/arXiv.2401.16625","DOIUrl":null,"url":null,"abstract":"We contribute the first publicly available dataset of factual claims from different platforms and fake YouTube videos on the 2023 Israel-Hamas war for automatic fake YouTube video classification. The FakeClaim data is collected from 60 fact-checking organizations in 30 languages and enriched with metadata from the fact-checking organizations curated by trained journalists specialized in fact-checking. Further, we classify fake videos within the subset of YouTube videos using textual information and user comments. We used a pre-trained model to classify each video with different feature combinations. Our best-performing fine-tuned language model, Universal Sentence Encoder (USE), achieves a Macro F1 of 87\\%, which shows that the trained model can be helpful for debunking fake videos using the comments from the user discussion. The dataset is available on Github\\footnote{https://github.com/Gautamshahi/FakeClaim}","PeriodicalId":126309,"journal":{"name":"European Conference on Information Retrieval","volume":"70 5","pages":"66-74"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FakeClaim: A Multiple Platform-driven Dataset for Identification of Fake News on 2023 Israel-Hamas War\",\"authors\":\"Gautam Kishore Shahi, Amit Kumar Jaiswal, Thomas Mandl\",\"doi\":\"10.48550/arXiv.2401.16625\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We contribute the first publicly available dataset of factual claims from different platforms and fake YouTube videos on the 2023 Israel-Hamas war for automatic fake YouTube video classification. The FakeClaim data is collected from 60 fact-checking organizations in 30 languages and enriched with metadata from the fact-checking organizations curated by trained journalists specialized in fact-checking. Further, we classify fake videos within the subset of YouTube videos using textual information and user comments. We used a pre-trained model to classify each video with different feature combinations. Our best-performing fine-tuned language model, Universal Sentence Encoder (USE), achieves a Macro F1 of 87\\\\%, which shows that the trained model can be helpful for debunking fake videos using the comments from the user discussion. The dataset is available on Github\\\\footnote{https://github.com/Gautamshahi/FakeClaim}\",\"PeriodicalId\":126309,\"journal\":{\"name\":\"European Conference on Information Retrieval\",\"volume\":\"70 5\",\"pages\":\"66-74\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Conference on Information Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2401.16625\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Conference on Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2401.16625","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提供了第一个公开可用的数据集,其中包含来自不同平台的事实陈述和关于 2023 年以色列-哈马斯战争的虚假 YouTube 视频,用于对虚假 YouTube 视频进行自动分类。FakeClaim 数据来自 60 个事实核查组织,使用 30 种语言,并由经过培训的事实核查专业记者从事实核查组织中收集元数据加以充实。此外,我们还利用文本信息和用户评论对 YouTube 视频子集中的虚假视频进行分类。我们使用预先训练好的模型,以不同的特征组合对每个视频进行分类。我们表现最好的微调语言模型--通用句子编码器(USE)--达到了 87% 的 Macro F1,这表明训练有素的模型有助于利用用户讨论中的评论来揭穿虚假视频。该数据集可在 Github\footnote{https://github.com/Gautamshahi/FakeClaim} 上获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
FakeClaim: A Multiple Platform-driven Dataset for Identification of Fake News on 2023 Israel-Hamas War
We contribute the first publicly available dataset of factual claims from different platforms and fake YouTube videos on the 2023 Israel-Hamas war for automatic fake YouTube video classification. The FakeClaim data is collected from 60 fact-checking organizations in 30 languages and enriched with metadata from the fact-checking organizations curated by trained journalists specialized in fact-checking. Further, we classify fake videos within the subset of YouTube videos using textual information and user comments. We used a pre-trained model to classify each video with different feature combinations. Our best-performing fine-tuned language model, Universal Sentence Encoder (USE), achieves a Macro F1 of 87\%, which shows that the trained model can be helpful for debunking fake videos using the comments from the user discussion. The dataset is available on Github\footnote{https://github.com/Gautamshahi/FakeClaim}
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信