{"title":"具有恒定波动性的几何莱维过程的参数估计","authors":"Sher Chhetri, Hongwei Long, Cory Ball","doi":"10.1007/s40745-024-00513-8","DOIUrl":null,"url":null,"abstract":"<div><p>In finance, various stochastic models have been used to describe price movements of financial instruments. Following the seminal work of Robert Merton, several jump-diffusion models have been proposed for option pricing and risk management. In this study, we augment the process related to the dynamics of log returns in the Black–Scholes model by incorporating alpha-stable Lévy motion with constant volatility. We employ the sample characteristic function approach to investigate parameter estimation for discretely observed stochastic differential equations driven by Lévy noises. Furthermore, we discuss the consistency and asymptotic properties of the proposed estimators and establish a Central Limit Theorem. To further demonstrate the validity of the estimators, we present simulation results for the model. The utility of the proposed model is demonstrated using the Dow Jones Industrial Average data, and all parameters involved in the model are estimated. In addition, we delved into the broader implications of our work, discussing the relevance of our methods to big data-driven research, particularly in the fields of financial data modeling and climate models. We also highlight the importance of optimization and data mining in these contexts, referencing key works in the field. This study thus contributes to the specific area of finance and beyond to the wider scientific community engaged in data science research and analysis.</p></div>","PeriodicalId":36280,"journal":{"name":"Annals of Data Science","volume":"12 1","pages":"63 - 93"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Parameter Estimation for Geometric Lévy Processes with Constant Volatility\",\"authors\":\"Sher Chhetri, Hongwei Long, Cory Ball\",\"doi\":\"10.1007/s40745-024-00513-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In finance, various stochastic models have been used to describe price movements of financial instruments. Following the seminal work of Robert Merton, several jump-diffusion models have been proposed for option pricing and risk management. In this study, we augment the process related to the dynamics of log returns in the Black–Scholes model by incorporating alpha-stable Lévy motion with constant volatility. We employ the sample characteristic function approach to investigate parameter estimation for discretely observed stochastic differential equations driven by Lévy noises. Furthermore, we discuss the consistency and asymptotic properties of the proposed estimators and establish a Central Limit Theorem. To further demonstrate the validity of the estimators, we present simulation results for the model. The utility of the proposed model is demonstrated using the Dow Jones Industrial Average data, and all parameters involved in the model are estimated. In addition, we delved into the broader implications of our work, discussing the relevance of our methods to big data-driven research, particularly in the fields of financial data modeling and climate models. We also highlight the importance of optimization and data mining in these contexts, referencing key works in the field. This study thus contributes to the specific area of finance and beyond to the wider scientific community engaged in data science research and analysis.</p></div>\",\"PeriodicalId\":36280,\"journal\":{\"name\":\"Annals of Data Science\",\"volume\":\"12 1\",\"pages\":\"63 - 93\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Data Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40745-024-00513-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Decision Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Data Science","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40745-024-00513-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Decision Sciences","Score":null,"Total":0}
Parameter Estimation for Geometric Lévy Processes with Constant Volatility
In finance, various stochastic models have been used to describe price movements of financial instruments. Following the seminal work of Robert Merton, several jump-diffusion models have been proposed for option pricing and risk management. In this study, we augment the process related to the dynamics of log returns in the Black–Scholes model by incorporating alpha-stable Lévy motion with constant volatility. We employ the sample characteristic function approach to investigate parameter estimation for discretely observed stochastic differential equations driven by Lévy noises. Furthermore, we discuss the consistency and asymptotic properties of the proposed estimators and establish a Central Limit Theorem. To further demonstrate the validity of the estimators, we present simulation results for the model. The utility of the proposed model is demonstrated using the Dow Jones Industrial Average data, and all parameters involved in the model are estimated. In addition, we delved into the broader implications of our work, discussing the relevance of our methods to big data-driven research, particularly in the fields of financial data modeling and climate models. We also highlight the importance of optimization and data mining in these contexts, referencing key works in the field. This study thus contributes to the specific area of finance and beyond to the wider scientific community engaged in data science research and analysis.
期刊介绍:
Annals of Data Science (ADS) publishes cutting-edge research findings, experimental results and case studies of data science. Although Data Science is regarded as an interdisciplinary field of using mathematics, statistics, databases, data mining, high-performance computing, knowledge management and virtualization to discover knowledge from Big Data, it should have its own scientific contents, such as axioms, laws and rules, which are fundamentally important for experts in different fields to explore their own interests from Big Data. ADS encourages contributors to address such challenging problems at this exchange platform. At present, how to discover knowledge from heterogeneous data under Big Data environment needs to be addressed. ADS is a series of volumes edited by either the editorial office or guest editors. Guest editors will be responsible for call-for-papers and the review process for high-quality contributions in their volumes.