具有恒定波动性的几何莱维过程的参数估计

Q1 Decision Sciences
Sher Chhetri, Hongwei Long, Cory Ball
{"title":"具有恒定波动性的几何莱维过程的参数估计","authors":"Sher Chhetri,&nbsp;Hongwei Long,&nbsp;Cory Ball","doi":"10.1007/s40745-024-00513-8","DOIUrl":null,"url":null,"abstract":"<div><p>In finance, various stochastic models have been used to describe price movements of financial instruments. Following the seminal work of Robert Merton, several jump-diffusion models have been proposed for option pricing and risk management. In this study, we augment the process related to the dynamics of log returns in the Black–Scholes model by incorporating alpha-stable Lévy motion with constant volatility. We employ the sample characteristic function approach to investigate parameter estimation for discretely observed stochastic differential equations driven by Lévy noises. Furthermore, we discuss the consistency and asymptotic properties of the proposed estimators and establish a Central Limit Theorem. To further demonstrate the validity of the estimators, we present simulation results for the model. The utility of the proposed model is demonstrated using the Dow Jones Industrial Average data, and all parameters involved in the model are estimated. In addition, we delved into the broader implications of our work, discussing the relevance of our methods to big data-driven research, particularly in the fields of financial data modeling and climate models. We also highlight the importance of optimization and data mining in these contexts, referencing key works in the field. This study thus contributes to the specific area of finance and beyond to the wider scientific community engaged in data science research and analysis.</p></div>","PeriodicalId":36280,"journal":{"name":"Annals of Data Science","volume":"12 1","pages":"63 - 93"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Parameter Estimation for Geometric Lévy Processes with Constant Volatility\",\"authors\":\"Sher Chhetri,&nbsp;Hongwei Long,&nbsp;Cory Ball\",\"doi\":\"10.1007/s40745-024-00513-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In finance, various stochastic models have been used to describe price movements of financial instruments. Following the seminal work of Robert Merton, several jump-diffusion models have been proposed for option pricing and risk management. In this study, we augment the process related to the dynamics of log returns in the Black–Scholes model by incorporating alpha-stable Lévy motion with constant volatility. We employ the sample characteristic function approach to investigate parameter estimation for discretely observed stochastic differential equations driven by Lévy noises. Furthermore, we discuss the consistency and asymptotic properties of the proposed estimators and establish a Central Limit Theorem. To further demonstrate the validity of the estimators, we present simulation results for the model. The utility of the proposed model is demonstrated using the Dow Jones Industrial Average data, and all parameters involved in the model are estimated. In addition, we delved into the broader implications of our work, discussing the relevance of our methods to big data-driven research, particularly in the fields of financial data modeling and climate models. We also highlight the importance of optimization and data mining in these contexts, referencing key works in the field. This study thus contributes to the specific area of finance and beyond to the wider scientific community engaged in data science research and analysis.</p></div>\",\"PeriodicalId\":36280,\"journal\":{\"name\":\"Annals of Data Science\",\"volume\":\"12 1\",\"pages\":\"63 - 93\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Data Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40745-024-00513-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Decision Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Data Science","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40745-024-00513-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Decision Sciences","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parameter Estimation for Geometric Lévy Processes with Constant Volatility

In finance, various stochastic models have been used to describe price movements of financial instruments. Following the seminal work of Robert Merton, several jump-diffusion models have been proposed for option pricing and risk management. In this study, we augment the process related to the dynamics of log returns in the Black–Scholes model by incorporating alpha-stable Lévy motion with constant volatility. We employ the sample characteristic function approach to investigate parameter estimation for discretely observed stochastic differential equations driven by Lévy noises. Furthermore, we discuss the consistency and asymptotic properties of the proposed estimators and establish a Central Limit Theorem. To further demonstrate the validity of the estimators, we present simulation results for the model. The utility of the proposed model is demonstrated using the Dow Jones Industrial Average data, and all parameters involved in the model are estimated. In addition, we delved into the broader implications of our work, discussing the relevance of our methods to big data-driven research, particularly in the fields of financial data modeling and climate models. We also highlight the importance of optimization and data mining in these contexts, referencing key works in the field. This study thus contributes to the specific area of finance and beyond to the wider scientific community engaged in data science research and analysis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Data Science
Annals of Data Science Decision Sciences-Statistics, Probability and Uncertainty
CiteScore
6.50
自引率
0.00%
发文量
93
期刊介绍: Annals of Data Science (ADS) publishes cutting-edge research findings, experimental results and case studies of data science. Although Data Science is regarded as an interdisciplinary field of using mathematics, statistics, databases, data mining, high-performance computing, knowledge management and virtualization to discover knowledge from Big Data, it should have its own scientific contents, such as axioms, laws and rules, which are fundamentally important for experts in different fields to explore their own interests from Big Data. ADS encourages contributors to address such challenging problems at this exchange platform. At present, how to discover knowledge from heterogeneous data under Big Data environment needs to be addressed.     ADS is a series of volumes edited by either the editorial office or guest editors. Guest editors will be responsible for call-for-papers and the review process for high-quality contributions in their volumes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信