新型组合式凸缘气浮轴承的开发与性能研究

IF 1.6 3区 工程技术 Q3 ENGINEERING, MECHANICAL
Congpeng Shao, Haojie Xu, ShuangMin Li, Xu Wang, Qi An
{"title":"新型组合式凸缘气浮轴承的开发与性能研究","authors":"Congpeng Shao, Haojie Xu, ShuangMin Li, Xu Wang, Qi An","doi":"10.1177/13506501241227487","DOIUrl":null,"url":null,"abstract":"In this paper, a new-type air foil bearing with combined bump foils is proposed. The bump foils are arranged and combined in the axial direction. The local and global stiffness of the bearing can be adjusted by the combination of the bump foils. Mechanical analysis of the bearing is carried out, and the mechanical model of the elastic deformation of the flat foil and the bump foils is constructed. Combined with non-isothermal Reynolds equation and energy equation, a fluid–solid coupling numerical calculation model is constructed. Through the actual bearing test research, the reliability of the established theoretical model is verified. On this basis, combined with the specific example, the influences of the structural parameters of the new-type foil bearing on its mechanical properties and lubrication performance are studied, and the specific influence curves are obtained. It is also found that the new-type bearing proposed in this paper has good adaptability to the shaft deflection. When the shaft is deflected, the bump foil at the axial end increases the minimum film height by generating large elastic deformation, which can help to avoid wear caused by direct contact between the shaft and the foil.","PeriodicalId":20570,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development and performance research of a new-type air foil bearing with combined bump foils\",\"authors\":\"Congpeng Shao, Haojie Xu, ShuangMin Li, Xu Wang, Qi An\",\"doi\":\"10.1177/13506501241227487\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a new-type air foil bearing with combined bump foils is proposed. The bump foils are arranged and combined in the axial direction. The local and global stiffness of the bearing can be adjusted by the combination of the bump foils. Mechanical analysis of the bearing is carried out, and the mechanical model of the elastic deformation of the flat foil and the bump foils is constructed. Combined with non-isothermal Reynolds equation and energy equation, a fluid–solid coupling numerical calculation model is constructed. Through the actual bearing test research, the reliability of the established theoretical model is verified. On this basis, combined with the specific example, the influences of the structural parameters of the new-type foil bearing on its mechanical properties and lubrication performance are studied, and the specific influence curves are obtained. It is also found that the new-type bearing proposed in this paper has good adaptability to the shaft deflection. When the shaft is deflected, the bump foil at the axial end increases the minimum film height by generating large elastic deformation, which can help to avoid wear caused by direct contact between the shaft and the foil.\",\"PeriodicalId\":20570,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/13506501241227487\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/13506501241227487","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种带有组合式凸块的新型气浮轴承。凸点箔在轴向排列组合。轴承的局部刚度和整体刚度可通过凸缘的组合进行调节。对轴承进行了力学分析,并构建了平箔和凸点箔弹性变形的力学模型。结合非等温雷诺方程和能量方程,构建了流固耦合数值计算模型。通过实际轴承试验研究,验证了所建立理论模型的可靠性。在此基础上,结合具体实例,研究了新型箔式轴承结构参数对其力学性能和润滑性能的影响,并得到了具体的影响曲线。研究还发现,本文提出的新型轴承对轴挠度具有良好的适应性。当轴发生挠曲时,轴端凸起的箔片会产生较大的弹性变形,从而增加最小膜高,这有助于避免轴与箔片直接接触造成的磨损。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Development and performance research of a new-type air foil bearing with combined bump foils
In this paper, a new-type air foil bearing with combined bump foils is proposed. The bump foils are arranged and combined in the axial direction. The local and global stiffness of the bearing can be adjusted by the combination of the bump foils. Mechanical analysis of the bearing is carried out, and the mechanical model of the elastic deformation of the flat foil and the bump foils is constructed. Combined with non-isothermal Reynolds equation and energy equation, a fluid–solid coupling numerical calculation model is constructed. Through the actual bearing test research, the reliability of the established theoretical model is verified. On this basis, combined with the specific example, the influences of the structural parameters of the new-type foil bearing on its mechanical properties and lubrication performance are studied, and the specific influence curves are obtained. It is also found that the new-type bearing proposed in this paper has good adaptability to the shaft deflection. When the shaft is deflected, the bump foil at the axial end increases the minimum film height by generating large elastic deformation, which can help to avoid wear caused by direct contact between the shaft and the foil.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.20
自引率
5.00%
发文量
110
审稿时长
6.1 months
期刊介绍: The Journal of Engineering Tribology publishes high-quality, peer-reviewed papers from academia and industry worldwide on the engineering science associated with tribology and its applications. "I am proud to say that I have been part of the tribology research community for almost 20 years. That community has always seemed to me to be highly active, progressive, and closely knit. The conferences are well attended and are characterised by a warmth and friendliness that transcends national boundaries. I see Part J as being an important part of that community, giving us an outlet to publish and promote our scholarly activities. I very much look forward to my term of office as editor of your Journal. I hope you will continue to submit papers, help out with reviewing, and most importantly to read and talk about the work you will find there." Professor Rob Dwyer-Joyce, Sheffield University, UK This journal is a member of the Committee on Publication Ethics (COPE).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信