Congpeng Shao, Haojie Xu, ShuangMin Li, Xu Wang, Qi An
{"title":"新型组合式凸缘气浮轴承的开发与性能研究","authors":"Congpeng Shao, Haojie Xu, ShuangMin Li, Xu Wang, Qi An","doi":"10.1177/13506501241227487","DOIUrl":null,"url":null,"abstract":"In this paper, a new-type air foil bearing with combined bump foils is proposed. The bump foils are arranged and combined in the axial direction. The local and global stiffness of the bearing can be adjusted by the combination of the bump foils. Mechanical analysis of the bearing is carried out, and the mechanical model of the elastic deformation of the flat foil and the bump foils is constructed. Combined with non-isothermal Reynolds equation and energy equation, a fluid–solid coupling numerical calculation model is constructed. Through the actual bearing test research, the reliability of the established theoretical model is verified. On this basis, combined with the specific example, the influences of the structural parameters of the new-type foil bearing on its mechanical properties and lubrication performance are studied, and the specific influence curves are obtained. It is also found that the new-type bearing proposed in this paper has good adaptability to the shaft deflection. When the shaft is deflected, the bump foil at the axial end increases the minimum film height by generating large elastic deformation, which can help to avoid wear caused by direct contact between the shaft and the foil.","PeriodicalId":20570,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development and performance research of a new-type air foil bearing with combined bump foils\",\"authors\":\"Congpeng Shao, Haojie Xu, ShuangMin Li, Xu Wang, Qi An\",\"doi\":\"10.1177/13506501241227487\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a new-type air foil bearing with combined bump foils is proposed. The bump foils are arranged and combined in the axial direction. The local and global stiffness of the bearing can be adjusted by the combination of the bump foils. Mechanical analysis of the bearing is carried out, and the mechanical model of the elastic deformation of the flat foil and the bump foils is constructed. Combined with non-isothermal Reynolds equation and energy equation, a fluid–solid coupling numerical calculation model is constructed. Through the actual bearing test research, the reliability of the established theoretical model is verified. On this basis, combined with the specific example, the influences of the structural parameters of the new-type foil bearing on its mechanical properties and lubrication performance are studied, and the specific influence curves are obtained. It is also found that the new-type bearing proposed in this paper has good adaptability to the shaft deflection. When the shaft is deflected, the bump foil at the axial end increases the minimum film height by generating large elastic deformation, which can help to avoid wear caused by direct contact between the shaft and the foil.\",\"PeriodicalId\":20570,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/13506501241227487\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/13506501241227487","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Development and performance research of a new-type air foil bearing with combined bump foils
In this paper, a new-type air foil bearing with combined bump foils is proposed. The bump foils are arranged and combined in the axial direction. The local and global stiffness of the bearing can be adjusted by the combination of the bump foils. Mechanical analysis of the bearing is carried out, and the mechanical model of the elastic deformation of the flat foil and the bump foils is constructed. Combined with non-isothermal Reynolds equation and energy equation, a fluid–solid coupling numerical calculation model is constructed. Through the actual bearing test research, the reliability of the established theoretical model is verified. On this basis, combined with the specific example, the influences of the structural parameters of the new-type foil bearing on its mechanical properties and lubrication performance are studied, and the specific influence curves are obtained. It is also found that the new-type bearing proposed in this paper has good adaptability to the shaft deflection. When the shaft is deflected, the bump foil at the axial end increases the minimum film height by generating large elastic deformation, which can help to avoid wear caused by direct contact between the shaft and the foil.
期刊介绍:
The Journal of Engineering Tribology publishes high-quality, peer-reviewed papers from academia and industry worldwide on the engineering science associated with tribology and its applications.
"I am proud to say that I have been part of the tribology research community for almost 20 years. That community has always seemed to me to be highly active, progressive, and closely knit. The conferences are well attended and are characterised by a warmth and friendliness that transcends national boundaries. I see Part J as being an important part of that community, giving us an outlet to publish and promote our scholarly activities. I very much look forward to my term of office as editor of your Journal. I hope you will continue to submit papers, help out with reviewing, and most importantly to read and talk about the work you will find there." Professor Rob Dwyer-Joyce, Sheffield University, UK
This journal is a member of the Committee on Publication Ethics (COPE).